These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
525 related articles for article (PubMed ID: 18403037)
1. Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm. Li T; Bai R; Liu J J Biotechnol; 2008 May; 135(1):52-7. PubMed ID: 18403037 [TBL] [Abstract][Full Text] [Related]
2. Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment. Yun MA; Yeon KM; Park JS; Lee CH; Chun J; Lim DJ Water Res; 2006 Jan; 40(1):45-52. PubMed ID: 16360189 [TBL] [Abstract][Full Text] [Related]
3. Effect of oxygen gradients on the activity and microbial community structure of a nitrifying, membrane-aerated biofilm. Downing LS; Nerenberg R Biotechnol Bioeng; 2008 Dec; 101(6):1193-204. PubMed ID: 18767185 [TBL] [Abstract][Full Text] [Related]
4. Characterisation of biofilm constituents and their effect on membrane filterability in MBRs. Ng TC; Ng HY Water Sci Technol; 2008; 58(10):1933-9. PubMed ID: 19039172 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional biofilm model with individual cells and continuum EPS matrix. Alpkvist E; Picioreanu C; van Loosdrecht MC; Heyden A Biotechnol Bioeng; 2006 Aug; 94(5):961-79. PubMed ID: 16615160 [TBL] [Abstract][Full Text] [Related]
6. Strains of internal biofilm in aerobic granular membrane bioreactors. Juang YC; Adav SS; Lee DJ Appl Microbiol Biotechnol; 2010 May; 86(6):1987-93. PubMed ID: 20306189 [TBL] [Abstract][Full Text] [Related]
7. Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance. Casey E; Glennon B; Hamer G Biotechnol Bioeng; 2000 Feb; 67(4):476-86. PubMed ID: 10620763 [TBL] [Abstract][Full Text] [Related]
8. Characterization of extracellular polymeric substances in rotating biological contractors and activated sludge flocs. Martín-Cereceda M; Jorand F; Guinea A; Block JC Environ Technol; 2001 Aug; 22(8):951-9. PubMed ID: 11561952 [TBL] [Abstract][Full Text] [Related]
9. Overcoming oxygen limitations in membrane-attached biofilms--investigation of flux and diffusivity in an anoxic biofilm. Emanuelsson EA; Livingston AG Water Res; 2004 Mar; 38(6):1530-41. PubMed ID: 15016530 [TBL] [Abstract][Full Text] [Related]
10. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Wang Z; Wu Z; Tang S Water Res; 2009 May; 43(9):2504-12. PubMed ID: 19285331 [TBL] [Abstract][Full Text] [Related]
11. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: modeling and experimental comparison. Wang R; Terada A; Lackner S; Smets BF; Henze M; Xia S; Zhao J Water Res; 2009 Jun; 43(10):2699-709. PubMed ID: 19375773 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of a methanotrophic culture in a membrane-aerated biofilm reactor. Rishell S; Casey E; Glennon B; Hamer G Biotechnol Prog; 2004; 20(4):1082-90. PubMed ID: 15296433 [TBL] [Abstract][Full Text] [Related]
13. Redox-stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal: the effect of co- versus counter-diffusion on reactor performance. Terada A; Lackner S; Tsuneda S; Smets BF Biotechnol Bioeng; 2007 May; 97(1):40-51. PubMed ID: 17013935 [TBL] [Abstract][Full Text] [Related]
14. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption. Aguilera A; Souza-Egipsy V; Martín-Uriz PS; Amils R Aquat Toxicol; 2008 Jul; 88(4):257-66. PubMed ID: 18554732 [TBL] [Abstract][Full Text] [Related]
15. Characterization of extracellular polymeric substances from denitrifying organism Comamonas denitrificans. Andersson S; Dalhammar G; Land CJ; Kuttuva Rajarao G Appl Microbiol Biotechnol; 2009 Mar; 82(3):535-43. PubMed ID: 19123000 [TBL] [Abstract][Full Text] [Related]
16. The effect of flow velocity on the distribution and composition of extracellular polymeric substances in biofilms and the detachment mechanism of biofilms. Wang C; Miao L; Hou J; Wang P; Qian J; Dai S Water Sci Technol; 2014; 69(4):825-32. PubMed ID: 24569283 [TBL] [Abstract][Full Text] [Related]
17. Extracellular polymeric substances in relation to nutrient removal from a sequencing batch biofilm reactor. Choi E; Yun Z; Park Y; Lee H; Jeong H; Kim K; Lee H; Rho K; Gil K Water Sci Technol; 2001; 43(6):185-92. PubMed ID: 11381966 [TBL] [Abstract][Full Text] [Related]
18. A new method for extraction of extracellular polymeric substances from biofilms and activated sludge suitable for direct quantification of sorbed metals. Wuertz S; Spaeth R; Hinderberger A; Griebe T; Flemming HC; Wilderer PA Water Sci Technol; 2001; 43(6):25-31. PubMed ID: 11381969 [TBL] [Abstract][Full Text] [Related]
19. Structure, composition, and strength of nitrifying membrane-aerated biofilms. Pellicer-Nàcher C; Smets BF Water Res; 2014 Jun; 57():151-61. PubMed ID: 24721662 [TBL] [Abstract][Full Text] [Related]
20. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge. Liang Z; Li W; Yang S; Du P Chemosphere; 2010 Oct; 81(5):626-32. PubMed ID: 20655088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]