These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 18403206)

  • 1. Stabilization of a multi-segment model of bipedal standing by local joint control overestimates the required ankle stiffness.
    Rozendaal LA; van Soest AJ
    Gait Posture; 2008 Oct; 28(3):525-7; author reply 528-9. PubMed ID: 18403206
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of joint stiffness on standing stability.
    Edwards WT
    Gait Posture; 2007 Mar; 25(3):432-9. PubMed ID: 16846737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What triggers the continuous muscle activity during upright standing?
    Masani K; Sayenko DG; Vette AH
    Gait Posture; 2013 Jan; 37(1):72-7. PubMed ID: 22824676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inverted pendulum model of bipedal standing cannot be stabilized through direct feedback of force and contractile element length and velocity at realistic series elastic element stiffness.
    van Soest AJ; Rozendaal LA
    Biol Cybern; 2008 Jul; 99(1):29-41. PubMed ID: 18584202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower extremity joint coupling during running: a current update.
    DeLeo AT; Dierks TA; Ferber R; Davis IS
    Clin Biomech (Bristol, Avon); 2004 Dec; 19(10):983-91. PubMed ID: 15531047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intralimb compensation strategy depends on the nature of joint perturbation in human hopping.
    Chang YH; Roiz RA; Auyang AG
    J Biomech; 2008; 41(9):1832-9. PubMed ID: 18499112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tripping without falling; lower limb strength, a limitation for balance recovery and a target for training in the elderly.
    Pijnappels M; Reeves ND; Maganaris CN; van Dieën JH
    J Electromyogr Kinesiol; 2008 Apr; 18(2):188-96. PubMed ID: 17761436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ankle muscle stiffness in the control of balance during quiet standing.
    Winter DA; Patla AE; Rietdyk S; Ishac MG
    J Neurophysiol; 2001 Jun; 85(6):2630-3. PubMed ID: 11387407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of textured surfaces on postural stability and lower limb muscle activity.
    Hatton AL; Dixon J; Martin D; Rome K
    J Electromyogr Kinesiol; 2009 Oct; 19(5):957-64. PubMed ID: 18565764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postural stability in altered and unaltered sensory environments following fatiguing exercise of lower extremity joints.
    Dickin DC; Doan JB
    Scand J Med Sci Sports; 2008 Dec; 18(6):765-72. PubMed ID: 18248536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel bioinspired control approaches to increase the stiffness variability in multi-muscle driven joints.
    Annunziata S; Paskarbeit J; Schneider A
    Bioinspir Biomim; 2011 Dec; 6(4):045003. PubMed ID: 22126821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Multi-Joint Coordination and Adaptation in Standing Balance: A Novel Device and System Identification Technique.
    Engelhart D; Schouten AC; Aarts RG; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):973-82. PubMed ID: 25423654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the geometric and mechanical characteristics of the spine musculature to provide rotational stiffness to two spine joints in the neutral posture.
    Brown SH; Potvin JR
    Hum Mov Sci; 2007 Feb; 26(1):113-23. PubMed ID: 17141904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The consequences of short-range stiffness and fluctuating muscle activity for proprioception of postural joint rotations: the relevance to human standing.
    Loram ID; Lakie M; Di Giulio I; Maganaris CN
    J Neurophysiol; 2009 Jul; 102(1):460-74. PubMed ID: 19420127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankle muscle stiffness alone cannot stabilize balance during quiet standing.
    Morasso PG; Sanguineti V
    J Neurophysiol; 2002 Oct; 88(4):2157-62. PubMed ID: 12364538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of altering neural, muscular and tendinous factors associated with aging on balance recovery using the ankle strategy: a simulation study.
    Barrett RS; Lichtwark GA
    J Theor Biol; 2008 Oct; 254(3):546-54. PubMed ID: 18639557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency features of mechanomyographic signals of human soleus muscle during quiet standing.
    Kouzaki M; Fukunaga T
    J Neurosci Methods; 2008 Aug; 173(2):241-8. PubMed ID: 18606185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: a PCA on segment rotations during unperturbed stance.
    Pinter IJ; van Swigchem R; van Soest AJ; Rozendaal LA
    J Neurophysiol; 2008 Dec; 100(6):3197-208. PubMed ID: 18829852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.