These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18403371)

  • 1. Coupling between ATP binding and DNA cleavage by DNA topoisomerase II: A unifying kinetic and structural mechanism.
    Mueller-Planitz F; Herschlag D
    J Biol Chem; 2008 Jun; 283(25):17463-76. PubMed ID: 18403371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hindering the strand passage reaction of human topoisomerase IIalpha without disturbing DNA cleavage, ATP hydrolysis, or the operation of the N-terminal clamp.
    Oestergaard VH; Giangiacomo L; Bjergbaek L; Knudsen BR; Andersen AH
    J Biol Chem; 2004 Jul; 279(27):28093-9. PubMed ID: 15123700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A human topoisomerase II alpha heterodimer with only one ATP binding site can go through successive catalytic cycles.
    Skouboe C; Bjergbaek L; Oestergaard VH; Larsen MK; Knudsen BR; Andersen AH
    J Biol Chem; 2003 Feb; 278(8):5768-74. PubMed ID: 12480934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-steady-state analysis of ATP hydrolysis by Saccharomyces cerevisiae DNA topoisomerase II. 2. Kinetic mechanism for the sequential hydrolysis of two ATP.
    Harkins TT; Lewis TJ; Lindsley JE
    Biochemistry; 1998 May; 37(20):7299-312. PubMed ID: 9585544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topoisomerase II drives DNA transport by hydrolyzing one ATP.
    Baird CL; Harkins TT; Morris SK; Lindsley JE
    Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13685-90. PubMed ID: 10570133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase.
    Wei H; Ruthenburg AJ; Bechis SK; Verdine GL
    J Biol Chem; 2005 Nov; 280(44):37041-7. PubMed ID: 16100112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity.
    Schmidt BH; Osheroff N; Berger JM
    Nat Struct Mol Biol; 2012 Nov; 19(11):1147-54. PubMed ID: 23022727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the coupling between ATP usage and DNA transport by yeast DNA topoisomerase II.
    Lindsley JE; Wang JC
    J Biol Chem; 1993 Apr; 268(11):8096-104. PubMed ID: 8385137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function analysis of the ATPase domain of African swine fever virus topoisomerase.
    Kuang W; Zhao Y; Li J; Deng Z
    mBio; 2024 Apr; 15(4):e0308623. PubMed ID: 38411066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis of ATP hydrolysis by two NH(2)-terminal fragments of yeast DNA topoisomerase II.
    Olland S; Wang JC
    J Biol Chem; 1999 Jul; 274(31):21688-94. PubMed ID: 10419479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow interaction of 5'-adenylyl-beta,gamma-imidodiphosphate with Escherichia coli DNA gyrase. Evidence for cooperativity in nucleotide binding.
    Tamura JK; Bates AD; Gellert M
    J Biol Chem; 1992 May; 267(13):9214-22. PubMed ID: 1315750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast topoisomerase II is inhibited by etoposide after hydrolyzing the first ATP and before releasing the second ADP.
    Morris SK; Lindsley JE
    J Biol Chem; 1999 Oct; 274(43):30690-6. PubMed ID: 10521457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and thermodynamic analysis of mutant type II DNA topoisomerases that cannot covalently cleave DNA.
    Morris SK; Harkins TT; Tennyson RB; Lindsley JE
    J Biol Chem; 1999 Feb; 274(6):3446-52. PubMed ID: 9920889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA topoisomerase II selects DNA cleavage sites based on reactivity rather than binding affinity.
    Mueller-Planitz F; Herschlag D
    Nucleic Acids Res; 2007; 35(11):3764-73. PubMed ID: 17517767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerases.
    Roca J; Wang JC
    Cell; 1992 Nov; 71(5):833-40. PubMed ID: 1330327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication between the ATPase and cleavage/religation domains of human topoisomerase IIalpha.
    Bjergbaek L; Kingma P; Nielsen IS; Wang Y; Westergaard O; Osheroff N; Andersen AH
    J Biol Chem; 2000 Apr; 275(17):13041-8. PubMed ID: 10777608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interdomain communication in DNA topoisomerase II. DNA binding and enzyme activation.
    Mueller-Planitz F; Herschlag D
    J Biol Chem; 2006 Aug; 281(33):23395-404. PubMed ID: 16782968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-steady-state analysis of ATP hydrolysis by Saccharomyces cerevisiae DNA topoisomerase II. 1. A DNA-dependent burst in ATP hydrolysis.
    Harkins TT; Lindsley JE
    Biochemistry; 1998 May; 37(20):7292-8. PubMed ID: 9585543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the simultaneous binding of eukaryotic DNA topoisomerase II to a pair of double-stranded DNA helices.
    Roca J; Berger JM; Wang JC
    J Biol Chem; 1993 Jul; 268(19):14250-5. PubMed ID: 8390987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying Lys359 as a critical residue for the ATP-dependent reactions of Drosophila DNA topoisomerase II.
    Hu T; Chang S; Hsieh T
    J Biol Chem; 1998 Apr; 273(16):9586-92. PubMed ID: 9545289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.