BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18403641)

  • 1. DUSP1 is controlled by p53 during the cellular response to oxidative stress.
    Liu YX; Wang J; Guo J; Wu J; Lieberman HB; Yin Y
    Mol Cancer Res; 2008 Apr; 6(4):624-33. PubMed ID: 18403641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual specificity phosphatase 1/CL100 is a direct transcriptional target of E2F-1 in the apoptotic response to oxidative stress.
    Wang J; Yin DP; Liu YX; Baer R; Yin Y
    Cancer Res; 2007 Jul; 67(14):6737-44. PubMed ID: 17638884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression.
    Yin Y; Liu YX; Jin YJ; Hall EJ; Barrett JC
    Nature; 2003 Apr; 422(6931):527-31. PubMed ID: 12673251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel mechanism for p53 to regulate its target gene ECK in signaling apoptosis.
    Jin YJ; Wang J; Qiao C; Hei TK; Brandt-Rauf PW; Yin Y
    Mol Cancer Res; 2006 Oct; 4(10):769-78. PubMed ID: 17050670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53.
    Ueda K; Arakawa H; Nakamura Y
    Oncogene; 2003 Aug; 22(36):5586-91. PubMed ID: 12944906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of MAPK-phosphatase 1 gene expression by glucocorticoids occurs through a tethering mechanism involving C/EBP.
    Johansson-Haque K; Palanichamy E; Okret S
    J Mol Endocrinol; 2008 Oct; 41(4):239-49. PubMed ID: 18682532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response.
    Wei X; Xu H; Kufe D
    Cancer Cell; 2005 Feb; 7(2):167-78. PubMed ID: 15710329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton induces apoptosis of hypoxic tumor cells by the p53-dependent and p38/JNK MAPK signaling pathways.
    Lee KB; Kim KR; Huh TL; Lee YM
    Int J Oncol; 2008 Dec; 33(6):1247-56. PubMed ID: 19020758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin immunoprecipitation-on-chip reveals stress-dependent p53 occupancy in primary normal cells but not in established cell lines.
    Shaked H; Shiff I; Kott-Gutkowski M; Siegfried Z; Haupt Y; Simon I
    Cancer Res; 2008 Dec; 68(23):9671-7. PubMed ID: 19047144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis.
    Raver-Shapira N; Marciano E; Meiri E; Spector Y; Rosenfeld N; Moskovits N; Bentwich Z; Oren M
    Mol Cell; 2007 Jun; 26(5):731-43. PubMed ID: 17540598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA damage signalling recruits RREB-1 to the p53 tumour suppressor promoter.
    Liu H; Hew HC; Lu ZG; Yamaguchi T; Miki Y; Yoshida K
    Biochem J; 2009 Aug; 422(3):543-51. PubMed ID: 19558368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment.
    Kavurma MM; Figg N; Bennett MR; Mercer J; Khachigian LM; Littlewood TD
    Biochem J; 2007 Oct; 407(1):79-87. PubMed ID: 17600529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PAC1 is a direct transcription target of E2F-1 in apoptotic signaling.
    Wu J; Jin YJ; Calaf GM; Huang WL; Yin Y
    Oncogene; 2007 Oct; 26(45):6526-35. PubMed ID: 17471234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. c-Abl tyrosine kinase activates p21 transcription via interaction with p53.
    Jing Y; Wang M; Tang W; Qi T; Gu C; Hao S; Zeng X
    J Biochem; 2007 May; 141(5):621-6. PubMed ID: 17339230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid-beta precursor-like protein APLP1 is a novel p53 transcriptional target gene that augments neuroblastoma cell death upon genotoxic stress.
    Tang X; Milyavsky M; Goldfinger N; Rotter V
    Oncogene; 2007 Nov; 26(52):7302-12. PubMed ID: 17533371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia induces p53-dependent transactivation and Fas/CD95-dependent apoptosis.
    Liu T; Laurell C; Selivanova G; Lundeberg J; Nilsson P; Wiman KG
    Cell Death Differ; 2007 Mar; 14(3):411-21. PubMed ID: 16917513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of a regulatory loop between DUSP1 and p53 contributes to hepatocellular carcinoma development and progression.
    Hao PP; Li H; Lee MJ; Wang YP; Kim JH; Yu GR; Lee SY; Leem SH; Jang KY; Kim DG
    J Hepatol; 2015 Jun; 62(6):1278-86. PubMed ID: 25617504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of p85 in p53-dependent apoptotic response to oxidative stress.
    Yin Y; Terauchi Y; Solomon GG; Aizawa S; Rangarajan PN; Yazaki Y; Kadowaki T; Barrett JC
    Nature; 1998 Feb; 391(6668):707-10. PubMed ID: 9490416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes.
    Tanaka T; Ohkubo S; Tatsuno I; Prives C
    Cell; 2007 Aug; 130(4):638-50. PubMed ID: 17719542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionally distinct polymorphic sequences in the human genome that are targets for p53 transactivation.
    Tomso DJ; Inga A; Menendez D; Pittman GS; Campbell MR; Storici F; Bell DA; Resnick MA
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6431-6. PubMed ID: 15843459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.