BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18403675)

  • 1. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes.
    Barreiro A; Rurali R; Hernández ER; Moser J; Pichler T; Forró L; Bachtold A
    Science; 2008 May; 320(5877):775-8. PubMed ID: 18403675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally driven molecular linear motors: a molecular dynamics study.
    Zambrano HA; Walther JH; Jaffe RL
    J Chem Phys; 2009 Dec; 131(24):241104. PubMed ID: 20059046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube motors driven by carbon nanotube.
    Takagi Y; Uda T; Ohno T
    J Chem Phys; 2008 May; 128(19):194704. PubMed ID: 18500883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial carbon nanotubes as shielded nanowires.
    Brothers EN; Scuseria GE; Kudin KN
    J Chem Phys; 2006 Jan; 124(4):041101. PubMed ID: 16460142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale memory cell based on a nanoelectromechanical switched capacitor.
    Jang JE; Cha SN; Choi YJ; Kang DJ; Butler TP; Hasko DG; Jung JE; Kim JM; Amaratunga GA
    Nat Nanotechnol; 2008 Jan; 3(1):26-30. PubMed ID: 18654446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal-gradient-induced interaction energy ramp and actuation of relative axial motion in short-sleeved double-walled carbon nanotubes.
    Shenai PM; Xu Z; Zhao Y
    Nanotechnology; 2011 Dec; 22(48):485702. PubMed ID: 22056730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting mechanical resonance in carbon nanotubes via inter-tube electrical transport measurements.
    Singh JP; Teki R; Ci L; Ajayan P; Koratkar N
    J Nanosci Nanotechnol; 2008 Jan; 8(1):436-8. PubMed ID: 18468098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio study of edge effect on relative motion of walls in carbon nanotubes.
    Popov AM; Lebedeva IV; Knizhnik AA; Lozovik YE; Potapkin BV
    J Chem Phys; 2013 Jan; 138(2):024703. PubMed ID: 23320709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tunable carbon nanotube electromechanical oscillator.
    Sazonova V; Yaish Y; Ustünel H; Roundy D; Arias TA; McEuen PL
    Nature; 2004 Sep; 431(7006):284-7. PubMed ID: 15372026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipation and fluctuations in nanoelectromechanical systems based on carbon nanotubes.
    Lebedeva IV; Knizhnik AA; Popov AM; Lozovik YE; Potapkin BV
    Nanotechnology; 2009 Mar; 20(10):105202. PubMed ID: 19417512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative displacement measurement of a nanotube cantilever with nanometer accuracy using epifluorescence microscopy.
    Park H; Kwon S; Kim S
    Rev Sci Instrum; 2009 May; 80(5):053703. PubMed ID: 19485512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Batch fabrication of carbon nanotube bearings.
    Subramanian A; Dong LX; Tharian J; Sennhauser U; Nelson BJ
    Nanotechnology; 2007 Feb; 18(7):075703. PubMed ID: 21730511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes.
    Chen D; Liu T; Zhou X; Tjiu WC; Hou H
    J Phys Chem B; 2009 Jul; 113(29):9741-8. PubMed ID: 19603838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct imaging of the structure, relaxation, and sterically constrained motion of encapsulated tungsten polyoxometalate lindqvist ions within carbon nanotubes.
    Sloan J; Matthewman G; Dyer-Smith C; Sung AY; Liu Z; Suenaga K; Kirkland AI; Flahaut E
    ACS Nano; 2008 May; 2(5):966-76. PubMed ID: 19206494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular-dynamics studies of competitive replacement in peptide-nanotube assembly for control of drug release.
    Cheng Y; Pei QX; Gao H
    Nanotechnology; 2009 Apr; 20(14):145101. PubMed ID: 19420516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Nanotubes as Thermally Induced Water Pumps.
    Oyarzua E; Walther JH; Megaridis CM; Koumoutsakos P; Zambrano HA
    ACS Nano; 2017 Oct; 11(10):9997-10002. PubMed ID: 28953353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoengineering heat transfer performance at carbon nanotube interfaces.
    Xu Z; Buehler MJ
    ACS Nano; 2009 Sep; 3(9):2767-75. PubMed ID: 19702296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.