These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18404203)

  • 1. The role of elastic stresses on leaf venation morphogenesis.
    Laguna MF; Bohn S; Jagla EA
    PLoS Comput Biol; 2008 Apr; 4(4):e1000055. PubMed ID: 18404203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis.
    Rolland-Lagan AG; Prusinkiewicz P
    Plant J; 2005 Dec; 44(5):854-65. PubMed ID: 16297075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico leaf venation networks: growth and reorganization driven by mechanical forces.
    Corson F; Adda-Bedia M; Boudaoud A
    J Theor Biol; 2009 Aug; 259(3):440-8. PubMed ID: 19446571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How canalization can make loops: a new model of reticulated leaf vascular pattern formation.
    Feugier FG; Iwasa Y
    J Theor Biol; 2006 Nov; 243(2):235-44. PubMed ID: 16887150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin of the diversity of leaf venation pattern.
    Fujita H; Mochizuki A
    Dev Dyn; 2006 Oct; 235(10):2710-21. PubMed ID: 16894601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canalization-based vein formation in a growing leaf.
    Lee SW; Feugier FG; Morishita Y
    J Theor Biol; 2014 Jul; 353():104-20. PubMed ID: 24632445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern formation of leaf veins by the positive feedback regulation between auxin flow and auxin efflux carrier.
    Fujita H; Mochizuki A
    J Theor Biol; 2006 Aug; 241(3):541-51. PubMed ID: 16510156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The FORKED genes are essential for distal vein meeting in Arabidopsis.
    Steynen QJ; Schultz EA
    Development; 2003 Oct; 130(19):4695-708. PubMed ID: 12925595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topology of leaf veins: Experimental observation and computational morphogenesis.
    Ma J; Zhao ZL; Lin S; Xie YM
    J Mech Behav Biomed Mater; 2021 Nov; 123():104788. PubMed ID: 34428694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A constant production hypothesis guides leaf venation patterning.
    Dimitrov P; Zucker SW
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9363-8. PubMed ID: 16754846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Geometro-mechanical model for pulsatile morphogenesis.
    Beloussov LV; Grabovsky VI
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):53-63. PubMed ID: 12623438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Venation networks and the origin of the leaf economics spectrum.
    Blonder B; Violle C; Bentley LP; Enquist BJ
    Ecol Lett; 2011 Feb; 14(2):91-100. PubMed ID: 21073643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution.
    McKown AD; Cochard H; Sack L
    Am Nat; 2010 Apr; 175(4):447-60. PubMed ID: 20178410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanical principles behind the golden ratio distribution of veins in plant leaves.
    Sun Z; Cui T; Zhu Y; Zhang W; Shi S; Tang S; Du Z; Liu C; Cui R; Chen H; Guo X
    Sci Rep; 2018 Sep; 8(1):13859. PubMed ID: 30217990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network feature-based phenotyping of leaf venation robustly reconstructs the latent space.
    Iwamasa K; Noshita K
    PLoS Comput Biol; 2023 Jul; 19(7):e1010581. PubMed ID: 37471283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying leaf venation patterns: two-dimensional maps.
    Rolland-Lagan AG; Amin M; Pakulska M
    Plant J; 2009 Jan; 57(1):195-205. PubMed ID: 18785998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring climate from angiosperm leaf venation networks.
    Blonder B; Enquist BJ
    New Phytol; 2014 Oct; 204(1):116-126. PubMed ID: 24725225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological Phenotypes Constitute a New Dimension in the Phenotypic Space of Leaf Venation Networks.
    Ronellenfitsch H; Lasser J; Daly DC; Katifori E
    PLoS Comput Biol; 2015 Dec; 11(12):e1004680. PubMed ID: 26700471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic buckling of morphoelastic filaments.
    Goldstein RE; Goriely A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):010901. PubMed ID: 16907052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Identification characters of leaf morphological and venation pattern of Baphicacanthus cusia with its confused herb Clerodendrum cyrtophyllum].
    He BZ; Qin JJ; Zhu YL; Liao YK
    Zhong Yao Cai; 2012 Mar; 35(3):385-91. PubMed ID: 22876676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.