BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 18404711)

  • 1. An in vitro comparison of possibly bioactive titanium implant surfaces.
    Göransson A; Arvidsson A; Currie F; Franke-Stenport V; Kjellin P; Mustafa K; Sul YT; Wennerberg A
    J Biomed Mater Res A; 2009 Mar; 88(4):1037-47. PubMed ID: 18404711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants.
    Cooper LF; Zhou Y; Takebe J; Guo J; Abron A; Holmén A; Ellingsen JE
    Biomaterials; 2006 Feb; 27(6):926-36. PubMed ID: 16112191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin.
    Kodama T; Goto T; Miyazaki T; Takahashi T
    Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction.
    Das K; Bose S; Bandyopadhyay A
    J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material.
    Khadra M; Lyngstadaas SP; Haanaes HR; Mustafa K
    Biomaterials; 2005 Jun; 26(17):3503-9. PubMed ID: 15621240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of different titanium and hydroxyapatite-coated dental implant surfaces on phenotypic expression of human bone-derived cells.
    Knabe C; Howlett CR; Klar F; Zreiqat H
    J Biomed Mater Res A; 2004 Oct; 71(1):98-107. PubMed ID: 15368259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblast-like cell attachment and proliferation on turned, blasted, and anodized titanium surfaces.
    Pae A; Kim SS; Kim HS; Woo YH
    Int J Oral Maxillofac Implants; 2011; 26(3):475-81. PubMed ID: 21691593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesion pattern and growth of primary human osteoblastic cells on five commercially available titanium surfaces.
    Passeri G; Cacchioli A; Ravanetti F; Galli C; Elezi E; Macaluso GM
    Clin Oral Implants Res; 2010 Jul; 21(7):756-65. PubMed ID: 20636730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression.
    Isa ZM; Schneider GB; Zaharias R; Seabold D; Stanford CM
    Int J Oral Maxillofac Implants; 2006; 21(2):203-11. PubMed ID: 16634490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces.
    Park JW; Kim YJ; Jang JH
    Clin Oral Implants Res; 2010 Apr; 21(4):398-408. PubMed ID: 20128830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro and in vivo evaluation of bioactive titanium implants following sodium removal treatment.
    Fawzy AS; Amer MA
    Dent Mater; 2009 Jan; 25(1):48-57. PubMed ID: 18585776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inflammatory response to a titanium surface with potential bioactive properties: an in vitro study.
    Göransson A; Gretzer C; Johansson A; Sul YT; Wennerberg A
    Clin Implant Dent Relat Res; 2006; 8(4):210-7. PubMed ID: 17100746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The combination of micron and nanotopography by H(2)SO(4)/H(2)O(2) treatment and its effects on osteoblast-specific gene expression of hMSCs.
    Mendonça G; Mendonça DB; Aragão FJ; Cooper LF
    J Biomed Mater Res A; 2010 Jul; 94(1):169-79. PubMed ID: 20128007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modifications and cell-materials interactions with anodized Ti.
    Das K; Bose S; Bandyopadhyay A
    Acta Biomater; 2007 Jul; 3(4):573-85. PubMed ID: 17320494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment.
    Rodriguez R; Kim K; Ong JL
    J Biomed Mater Res A; 2003 Jun; 65(3):352-8. PubMed ID: 12746882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human osteoblastic cell response to a Ca- and P-enriched titanium surface obtained by anodization.
    Franco Rde L; Chiesa R; Beloti MM; de Oliveira PT; Rosa AL
    J Biomed Mater Res A; 2009 Mar; 88(4):841-8. PubMed ID: 18357568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces.
    Miron RJ; Oates CJ; Molenberg A; Dard M; Hamilton DW
    Biomaterials; 2010 Jan; 31(3):449-60. PubMed ID: 19819013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of titanium surfaces blasted with TiO2 particles on the initial attachment of cells derived from human mandibular bone. A scanning electron microscopic and histomorphometric analysis.
    Mustafa K; Wroblewski J; Hultenby K; Lopez BS; Arvidson K
    Clin Oral Implants Res; 2000 Apr; 11(2):116-28. PubMed ID: 11168202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces.
    Rausch-fan X; Qu Z; Wieland M; Matejka M; Schedle A
    Dent Mater; 2008 Jan; 24(1):102-10. PubMed ID: 17467048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of implant surface microtopography on osteoblast gene expression.
    Masaki C; Schneider GB; Zaharias R; Seabold D; Stanford C
    Clin Oral Implants Res; 2005 Dec; 16(6):650-6. PubMed ID: 16307571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.