BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 18404765)

  • 21. Highly selective aza-nitrile inhibitors for cathepsin K, structural optimization and molecular modeling.
    Yuan XY; Fu DY; Ren XF; Fang X; Wang L; Zou S; Wu Y
    Org Biomol Chem; 2013 Sep; 11(35):5847-52. PubMed ID: 23900712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dipeptidyl nitriles as human dipeptidyl peptidase I inhibitors.
    Bondebjerg J; Fuglsang H; Valeur KR; Pedersen J; Naerum L
    Bioorg Med Chem Lett; 2006 Jul; 16(13):3614-7. PubMed ID: 16647256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inactivation of cysteine proteases.
    Govardhan CP; Abeles RH
    Arch Biochem Biophys; 1996 Jun; 330(1):110-4. PubMed ID: 8651683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aza-peptide epoxides: potent and selective inhibitors of Schistosoma mansoni and pig kidney legumains (asparaginyl endopeptidases).
    James KE; Götz MG; Caffrey CR; Hansell E; Carter W; Barrett AJ; McKerrow JH; Powers JC
    Biol Chem; 2003 Dec; 384(12):1613-8. PubMed ID: 14719804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptidyl allyl sulfones: a new class of inhibitors for clan CA cysteine proteases.
    Götz MG; Caffrey CR; Hansell E; McKerrow JH; Powers JC
    Bioorg Med Chem; 2004 Oct; 12(19):5203-11. PubMed ID: 15351403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic studies on the inactivation of papain by epoxysuccinyl inhibitors.
    Meara JP; Rich DH
    J Med Chem; 1996 Aug; 39(17):3357-66. PubMed ID: 8765519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active Site Mapping of Human Cathepsin F with Dipeptide Nitrile Inhibitors.
    Schmitz J; Furtmann N; Ponert M; Frizler M; Löser R; Bartz U; Bajorath J; Gütschow M
    ChemMedChem; 2015 Aug; 10(8):1365-77. PubMed ID: 26119278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases.
    Sadaghiani AM; Verhelst SH; Gocheva V; Hill K; Majerova E; Stinson S; Joyce JA; Bogyo M
    Chem Biol; 2007 May; 14(5):499-511. PubMed ID: 17524981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facing the gem-dialkyl effect in enzyme inhibitor design: preparation of homocycloleucine-based azadipeptide nitriles.
    Frizler M; Lohr F; Lülsdorff M; Gütschow M
    Chemistry; 2011 Oct; 17(41):11419-23. PubMed ID: 21898616
    [No Abstract]   [Full Text] [Related]  

  • 30. New cathepsin inhibitors to explore the fluorophilic properties of the S2 pocket of cathepsin B: design, synthesis, and biological evaluation.
    Fustero S; Rodrigo V; Sánchez-Roselló M; del Pozo C; Timoneda J; Frizler M; Sisay MT; Bajorath J; Calle LP; Cañada FJ; Jiménez-Barbero J; Gütschow M
    Chemistry; 2011 May; 17(19):5256-60. PubMed ID: 21452179
    [No Abstract]   [Full Text] [Related]  

  • 31. Novel purine nitrile derived inhibitors of the cysteine protease cathepsin K.
    Altmann E; Cowan-Jacob SW; Missbach M
    J Med Chem; 2004 Nov; 47(24):5833-6. PubMed ID: 15537340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A generally applicable method for assessing the electrophilicity and reactivity of diverse nitrile-containing compounds.
    Oballa RM; Truchon JF; Bayly CI; Chauret N; Day S; Crane S; Berthelette C
    Bioorg Med Chem Lett; 2007 Feb; 17(4):998-1002. PubMed ID: 17157022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "Click" synthesis of small molecule-peptide conjugates for organelle-specific delivery and inhibition of lysosomal cysteine proteases.
    Loh Y; Shi H; Hu M; Yao SQ
    Chem Commun (Camb); 2010 Nov; 46(44):8407-9. PubMed ID: 20931108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dipeptide nitrile inhibitors of cathepsin K.
    Altmann E; Aichholz R; Betschart C; Buhl T; Green J; Lattmann R; Missbach M
    Bioorg Med Chem Lett; 2006 May; 16(9):2549-54. PubMed ID: 16480867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and evaluation of chloromethyl sulfoxides as a new class of selective irreversible cysteine protease inhibitors.
    Brouwer AJ; Bunschoten A; Liskamp RM
    Bioorg Med Chem; 2007 Nov; 15(22):6985-93. PubMed ID: 17869119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of warheads for design of cysteine protease inhibitors.
    Silva DG; Ribeiro JFR; De Vita D; Cianni L; Franco CH; Freitas-Junior LH; Moraes CB; Rocha JR; Burtoloso ACB; Kenny PW; Leitão A; Montanari CA
    Bioorg Med Chem Lett; 2017 Nov; 27(22):5031-5035. PubMed ID: 29054358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design, synthesis, and evaluation of aza-peptide epoxides as selective and potent inhibitors of caspases-1, -3, -6, and -8.
    James KE; Asgian JL; Li ZZ; Ekici OD; Rubin JR; Mikolajczyk J; Salvesen GS; Powers JC
    J Med Chem; 2004 Mar; 47(6):1553-74. PubMed ID: 14998341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. eta(1)-N-succinimidato complexes of iron, molybdenum and tungsten as reversible inhibitors of papain.
    Rudolf B; Salmain M; Martel A; Palusiak M; Zakrzewski J
    J Inorg Biochem; 2009 Aug; 103(8):1162-8. PubMed ID: 19616302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New m-calpain substrate-based azapeptide inhibitors.
    Bánóczi Z; Tantos Á; Farkas A; Majer Z; Dókus LE; Tompa P; Hudecz F
    J Pept Sci; 2013 Jun; 19(6):370-6. PubMed ID: 23613308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seco-prolinenitrile inhibitors of dipeptidyl peptidase IV define minimal pharmacophore requirements at P1.
    Magnin DR; Taunk PC; Robertson JG; Wang A; Marcinkeviciene J; Kirby MS; Hamann LG
    Bioorg Med Chem Lett; 2006 Mar; 16(6):1731-4. PubMed ID: 16376077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.