These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1135 related articles for article (PubMed ID: 18404769)
41. Methanol induction optimization for scFv antibody fragment production in Pichia pastoris. Cunha AE; Clemente JJ; Gomes R; Pinto F; Thomaz M; Miranda S; Pinto R; Moosmayer D; Donner P; Carrondo MJ Biotechnol Bioeng; 2004 May; 86(4):458-67. PubMed ID: 15112298 [TBL] [Abstract][Full Text] [Related]
42. A 3D analysis of oxygen transfer in a low-cost micro-bioreactor for animal cell suspension culture. Yu P; Lee TS; Zeng Y; Low HT Comput Methods Programs Biomed; 2007 Jan; 85(1):59-68. PubMed ID: 17064809 [TBL] [Abstract][Full Text] [Related]
43. Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics, and oxygen mass transfer. Ramakrishnan D; Curtis WR Biotechnol Bioeng; 2004 Oct; 88(2):248-60. PubMed ID: 15449296 [TBL] [Abstract][Full Text] [Related]
44. A comprehensive comparison of mixing, mass transfer, Chinese hamster ovary cell growth, and antibody production using Rushton turbine and marine impellers. Sandadi S; Pedersen H; Bowers JS; Rendeiro D Bioprocess Biosyst Eng; 2011 Sep; 34(7):819-32. PubMed ID: 21505815 [TBL] [Abstract][Full Text] [Related]
45. Growth and recombinant protein expression with Escherichia coli in different batch cultivation media. Hortsch R; Weuster-Botz D Appl Microbiol Biotechnol; 2011 Apr; 90(1):69-76. PubMed ID: 21181153 [TBL] [Abstract][Full Text] [Related]
46. Scale-up of L-lactic acid production by mutant strain Rhizopus sp. MK-96-1196 from 0.003 m3 to 5 m3 in airlift bioreactors. Liu T; Miura S; Yaguchi M; Arimura T; Park EY; Okabe M J Biosci Bioeng; 2006 Jan; 101(1):9-12. PubMed ID: 16503284 [TBL] [Abstract][Full Text] [Related]
47. Fully automated single-use stirred-tank bioreactors for parallel microbial cultivations. Kusterer A; Krause C; Kaufmann K; Arnold M; Weuster-Botz D Bioprocess Biosyst Eng; 2008 Apr; 31(3):207-15. PubMed ID: 18193293 [TBL] [Abstract][Full Text] [Related]
48. Kinetics of batch single cell protein production from rice polishings with Candida utilis in continuously aerated tank reactors. Rajoka MI; Khan SH; Jabbar MA; Awan MS; Hashmi AS Bioresour Technol; 2006 Oct; 97(15):1934-41. PubMed ID: 16226886 [TBL] [Abstract][Full Text] [Related]
49. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Alfenore S; Cameleyre X; Benbadis L; Bideaux C; Uribelarrea JL; Goma G; Molina-Jouve C; Guillouet SE Appl Microbiol Biotechnol; 2004 Feb; 63(5):537-42. PubMed ID: 12879304 [TBL] [Abstract][Full Text] [Related]
50. Online medium-throughput respirometry-based OTR measurements in magnetically stirred cultures. Brethauer S; Held M; Panke S Biotechnol Bioeng; 2007 Oct; 98(2):356-67. PubMed ID: 17390384 [TBL] [Abstract][Full Text] [Related]
51. Process parameter shifting: Part II. Biphasic cultivation-A tool for enhancing the volumetric productivity of batch processes using Epo-Fc expressing CHO cells. Trummer E; Fauland K; Seidinger S; Schriebl K; Lattenmayer C; Kunert R; Vorauer-Uhl K; Weik R; Borth N; Katinger H; Müller D Biotechnol Bioeng; 2006 Aug; 94(6):1045-52. PubMed ID: 16736532 [TBL] [Abstract][Full Text] [Related]
52. Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Szita N; Boccazzi P; Zhang Z; Boyle P; Sinskey AJ; Jensen KF Lab Chip; 2005 Aug; 5(8):819-26. PubMed ID: 16027932 [TBL] [Abstract][Full Text] [Related]
53. Improvement of foam breaking and oxygen-transfer performance in a stirred-tank fermenter. Takesono S; Onodera M; Toda K; Yoshida M; Yamagiwa K; Ohkawa A Bioprocess Biosyst Eng; 2006 Mar; 28(4):235-42. PubMed ID: 16208498 [TBL] [Abstract][Full Text] [Related]
54. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
55. An actively mixed mini-bioreactor for protein production from suspended animal cells. Diao J; Young L; Zhou P; Shuler ML Biotechnol Bioeng; 2008 May; 100(1):72-81. PubMed ID: 18078290 [TBL] [Abstract][Full Text] [Related]
56. Scale-up of breast cancer stem cell aggregate cultures to suspension bioreactors. Youn BS; Sen A; Behie LA; Girgis-Gabardo A; Hassell JA Biotechnol Prog; 2006; 22(3):801-10. PubMed ID: 16739964 [TBL] [Abstract][Full Text] [Related]
57. Pilot-scale process development and scale up for antifungal production. Junker B; Walker A; Hesse M; Lester M; Vesey D; Christensen J; Burgess B; Connors N Bioprocess Biosyst Eng; 2009 Jun; 32(4):443-58. PubMed ID: 18853195 [TBL] [Abstract][Full Text] [Related]
58. A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Legmann R; Schreyer HB; Combs RG; McCormick EL; Russo AP; Rodgers ST Biotechnol Bioeng; 2009 Dec; 104(6):1107-20. PubMed ID: 19623562 [TBL] [Abstract][Full Text] [Related]
59. Optimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface methodology. Maneeboon T; Vanichsriratana W; Pomchaitaward C; Kitpreechavanich V Appl Biochem Biotechnol; 2010 May; 161(1-8):137-46. PubMed ID: 20091139 [TBL] [Abstract][Full Text] [Related]
60. Culture scale-up studies as seen from the viewpoint of oxygen supply and dissolved carbon dioxide stripping. Matsunaga N; Kano K; Maki Y; Dobashi T J Biosci Bioeng; 2009 Apr; 107(4):412-8. PubMed ID: 19332301 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]