These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 18405347)
1. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. Panseri S; Cunha C; Lowery J; Del Carro U; Taraballi F; Amadio S; Vescovi A; Gelain F BMC Biotechnol; 2008 Apr; 8():39. PubMed ID: 18405347 [TBL] [Abstract][Full Text] [Related]
2. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone) nerve conduit with tailored degradation rate. Yu W; Zhao W; Zhu C; Zhang X; Ye D; Zhang W; Zhou Y; Jiang X; Zhang Z BMC Neurosci; 2011 Jul; 12():68. PubMed ID: 21756368 [TBL] [Abstract][Full Text] [Related]
3. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. Rutkowski GE; Miller CA; Jeftinija S; Mallapragada SK J Neural Eng; 2004 Sep; 1(3):151-7. PubMed ID: 15876634 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of seamless electrospun collagen/PLGA conduits whose walls comprise highly longitudinal aligned nanofibers for nerve regeneration. Ouyang Y; Huang C; Zhu Y; Fan C; Ke Q J Biomed Nanotechnol; 2013 Jun; 9(6):931-43. PubMed ID: 23858957 [TBL] [Abstract][Full Text] [Related]
5. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478 [TBL] [Abstract][Full Text] [Related]
6. Electrospun silk-polyaniline conduits for functional nerve regeneration in rat sciatic nerve injury model. Das S; Sharma M; Saharia D; Sarma KK; Muir EM; Bora U Biomed Mater; 2017 Aug; 12(4):045025. PubMed ID: 28632137 [TBL] [Abstract][Full Text] [Related]
8. A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration. Yu W; Jiang X; Cai M; Zhao W; Ye D; Zhou Y; Zhu C; Zhang X; Lu X; Zhang Z Nanotechnology; 2014 Apr; 25(16):165102. PubMed ID: 24670610 [TBL] [Abstract][Full Text] [Related]
9. Nanofibrous nerve conduit-enhanced peripheral nerve regeneration. Jiang X; Mi R; Hoke A; Chew SY J Tissue Eng Regen Med; 2014 May; 8(5):377-85. PubMed ID: 22700359 [TBL] [Abstract][Full Text] [Related]
10. Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model. Suzuki K; Tanaka H; Ebara M; Uto K; Matsuoka H; Nishimoto S; Okada K; Murase T; Yoshikawa H Acta Biomater; 2017 Apr; 53():250-259. PubMed ID: 28179161 [TBL] [Abstract][Full Text] [Related]
11. Use of chitosan scaffolds for repairing rat sciatic nerve defects. Simões MJ; Amado S; Gärtner A; Armada-Da-Silva PA; Raimondo S; Vieira M; Luís AL; Shirosaki Y; Veloso AP; Santos JD; Varejão AS; Geuna S; Maurício AC Ital J Anat Embryol; 2010; 115(3):190-210. PubMed ID: 21287974 [TBL] [Abstract][Full Text] [Related]
12. The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Chang CJ; Hsu SH Biomaterials; 2006 Mar; 27(7):1035-42. PubMed ID: 16098582 [TBL] [Abstract][Full Text] [Related]
13. Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. Huang C; Ouyang Y; Niu H; He N; Ke Q; Jin X; Li D; Fang J; Liu W; Fan C; Lin T ACS Appl Mater Interfaces; 2015 Apr; 7(13):7189-96. PubMed ID: 25786058 [TBL] [Abstract][Full Text] [Related]
14. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Chen YS; Chang JY; Cheng CY; Tsai FJ; Yao CH; Liu BS Biomaterials; 2005 Jun; 26(18):3911-8. PubMed ID: 15626438 [TBL] [Abstract][Full Text] [Related]
15. Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Lago N; Ceballos D; Rodríguez FJ; Stieglitz T; Navarro X Biomaterials; 2005 May; 26(14):2021-31. PubMed ID: 15576176 [TBL] [Abstract][Full Text] [Related]
16. Electrical stimulation accelerates motor functional recovery in the rat model of 15-mm sciatic nerve gap bridged by scaffolds with longitudinally oriented microchannels. Huang J; Lu L; Hu X; Ye Z; Peng Y; Yan X; Geng D; Luo Z Neurorehabil Neural Repair; 2010 Oct; 24(8):736-45. PubMed ID: 20702391 [TBL] [Abstract][Full Text] [Related]
17. The use of undifferentiated bone marrow stromal cells for sciatic nerve regeneration in rats. Mohammadi R; Azizi S; Delirezh N; Hobbenaghi R; Amini K; Malekkhetabi P Int J Oral Maxillofac Surg; 2012 May; 41(5):650-6. PubMed ID: 22154576 [TBL] [Abstract][Full Text] [Related]
18. Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice. Pereira Lopes FR; Camargo de Moura Campos L; Dias Corrêa J; Balduino A; Lora S; Langone F; Borojevic R; Blanco Martinez AM Exp Neurol; 2006 Apr; 198(2):457-68. PubMed ID: 16487971 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration. Yang Y; Gu X; Tan R; Hu W; Wang X; Zhang P; Zhang T Biotechnol Lett; 2004 Dec; 26(23):1793-7. PubMed ID: 15672216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]