BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 18405906)

  • 1. Separation of organic cations using novel background electrolytes by capillary electrophoresis.
    Steiner SA; Fritz JS
    J Chromatogr A; 2008 May; 1192(1):152-6. PubMed ID: 18405906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of the electroosmotic flow of electrolyte systems for nonaqueous capillary electrophoresis.
    Grob M; Steiner F
    Electrophoresis; 2002 Jun; 23(12):1853-61. PubMed ID: 12116128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and reproducible analysis of peptides by capillary electrophoresis using noncovalently bilayer-coated capillaries.
    Catai JR; Somsen GW; de Jong GJ
    Electrophoresis; 2004 Mar; 25(6):817-24. PubMed ID: 15004841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonaqueous capillary electrophoresis with alcoholic background electrolytes: separation efficiency under high electrical field strengths.
    Palonen S; Jussila M; Porras SP; Hyötyläinen T; Riekkola ML
    Electrophoresis; 2002 Feb; 23(3):393-9. PubMed ID: 11870738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using of S-(-)-2-hydroxymethyl-1,1-dimethylpyrrolidinium tetrafluoroborate as additive to the background electrolyte in capillary electrophoresis.
    Maier V; Horáková J; Petr J; Drahonovský D; Sevcík J
    J Chromatogr A; 2006 Jan; 1103(2):337-43. PubMed ID: 16310202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the zeta potential of silica capillaries in relation to the background electrolyte composition.
    Berli CL; Piaggio MV; Deiber JA
    Electrophoresis; 2003 May; 24(10):1587-95. PubMed ID: 12761788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation effects in the separation of calix[4]pyrroles by nonaqueous capillary electrophoresis with tetraalkylammonium chloride salts as background electrolytes.
    Ma H; Luo M; Shao S; Liu X; Jiang S
    J Chromatogr A; 2008 May; 1192(1):180-6. PubMed ID: 18395731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel and simple nonaqueous capillary electrophoresis separation and determination bioactive triterpenes in Chinese herbs.
    Qi S; Ding L; Tian K; Chen X; Hu Z
    J Pharm Biomed Anal; 2006 Jan; 40(1):35-41. PubMed ID: 16011887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmotic flow-balanced isotachophoretic stacking with continuous electrokinetic injection for the concentration of anions in high conductivity samples.
    Breadmore MC
    J Chromatogr A; 2010 Jun; 1217(24):3900-6. PubMed ID: 20451208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 100,000-fold concentration of anions in capillary zone electrophoresis using electroosmotic flow controlled counterflow isotachophoretic stacking under field amplified conditions.
    Breadmore MC; Quirino JP
    Anal Chem; 2008 Aug; 80(16):6373-81. PubMed ID: 18627177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Change of migration time and separation window accompanied by field-enhanced sample stacking in capillary zone electrophoresis.
    Hirokawa T; Ikuta N; Yoshiyama T; Okamoto H
    Electrophoresis; 2001 Oct; 22(16):3444-8. PubMed ID: 11669524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the effect of ionic strength of Tris-acetate background electrolyte on electrophoretic mobilities of mono-, di-, and trivalent organic anions by capillary electrophoresis.
    Koval D; Kasicka V; Zusková I
    Electrophoresis; 2005 Sep; 26(17):3221-31. PubMed ID: 16097028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative capillary zone electrophoresis method for the precise determination of charge differences arising from the manufacture of heparan-N-sulfatase.
    Roseman DS; Weinberger R
    J Pharm Biomed Anal; 2013 Nov; 85():67-73. PubMed ID: 23917036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyelectrolyte-modified short microchannel for cation separation.
    Bai X; Roussel C; Jensen H; Girault HH
    Electrophoresis; 2004 Mar; 25(6):931-5. PubMed ID: 15004857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of a design of experiments to study the influence of the background electrolyte on separation and detection in non-aqueous capillary electrophoresis-mass spectrometry.
    Posch TN; Müller A; Schulz W; Pütz M; Huhn C
    Electrophoresis; 2012 Feb; 33(4):583-98. PubMed ID: 22451051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple effect of surfactants used as additives in background electrolytes in capillary zone electrophoresis: cetyltrimethylammonium bromide as example of model surfactant.
    Beckers JL; Bocek P
    Electrophoresis; 2002 Jun; 23(12):1947-52. PubMed ID: 12116141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of suxamethonium in a pharmaceutical formulation by capillary electrophoresis with contactless conductivity detection (CE-C(4)D).
    Nussbaumer S; Fleury-Souverain S; Rudaz S; Bonnabry P; Veuthey JL
    J Pharm Biomed Anal; 2009 Feb; 49(2):333-7. PubMed ID: 19121913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electroosmotic flow on selectivity, efficiency, and resolution in capillary zone electrophoresis expressed by the dimensionless reduced mobility.
    Kenndler E
    J Capillary Electrophor; 1996; 3(4):191-8. PubMed ID: 9384736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer optimization of background electrolyte composition in the separation of metal ions by capillary electrophoresis.
    Billiet HA; Andersson PE; Haddad PR
    Electrophoresis; 1996 Aug; 17(8):1367-72. PubMed ID: 8874064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual UV-absorbing background electrolytes for simultaneous separation and detection of small cations and anions by capillary zone electrophoresis.
    Xiong X; Li SF
    Electrophoresis; 1998 Sep; 19(12):2243-51. PubMed ID: 9761211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.