BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18405994)

  • 1. Enzymatic hydrolysis of PTT polymers and oligomers.
    Eberl A; Heumann S; Kotek R; Kaufmann F; Mitsche S; Cavaco-Paulo A; Gübitz GM
    J Biotechnol; 2008 May; 135(1):45-51. PubMed ID: 18405994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic surface modification of poly(ethylene terephthalate).
    Vertommen MA; Nierstrasz VA; Veer Mv; Warmoeskerken MM
    J Biotechnol; 2005 Dec; 120(4):376-86. PubMed ID: 16115695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules.
    Eberl A; Heumann S; Brückner T; Araujo R; Cavaco-Paulo A; Kaufmann F; Kroutil W; Guebitz GM
    J Biotechnol; 2009 Sep; 143(3):207-12. PubMed ID: 19616594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi.
    Alisch-Mark M; Herrmann A; Zimmermann W
    Biotechnol Lett; 2006 May; 28(10):681-5. PubMed ID: 16791721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres.
    Heumann S; Eberl A; Pobeheim H; Liebminger S; Fischer-Colbrie G; Almansa E; Cavaco-Paulo A; Gübitz GM
    J Biochem Biophys Methods; 2006 Nov; 69(1-2):89-99. PubMed ID: 16624419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi.
    Nimchua T; Punnapayak H; Zimmermann W
    Biotechnol J; 2007 Mar; 2(3):361-4. PubMed ID: 17136729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymes for the biofunctionalization of poly(ethylene terephthalate).
    Zimmermann W; Billig S
    Adv Biochem Eng Biotechnol; 2011; 125():97-120. PubMed ID: 21076908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of solid products from the de-polymerization of poly(trimethylene terephthalate) in supercritical methanol.
    Zhang C; Xu L; Zhang H; Yang J; Du J; Liu Z
    J Chromatogr A; 2004 Nov; 1055(1-2):115-21. PubMed ID: 15560487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on reaction-induced miscibility of poly(trimethylene terephthalate)/polycarbonate blends.
    Aravind I; Eichhorn KJ; Komber H; Jehnichen D; Zafeiropoulos NE; Ahn KH; Grohens Y; Stamm M; Thomas S
    J Phys Chem B; 2009 Feb; 113(6):1569-78. PubMed ID: 19193163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films.
    Barth M; Honak A; Oeser T; Wei R; Belisário-Ferrari MR; Then J; Schmidt J; Zimmermann W
    Biotechnol J; 2016 Aug; 11(8):1082-7. PubMed ID: 27214855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers.
    Araújo R; Silva C; O'Neill A; Micaelo N; Guebitz G; Soares CM; Casal M; Cavaco-Paulo A
    J Biotechnol; 2007 Mar; 128(4):849-57. PubMed ID: 17306400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase.
    Matamá T; Vaz F; Gübitz GM; Cavaco-Paulo A
    Biotechnol J; 2006; 1(7-8):842-9. PubMed ID: 16927260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates.
    Perz V; Bleymaier K; Sinkel C; Kueper U; Bonnekessel M; Ribitsch D; Guebitz GM
    N Biotechnol; 2016 Mar; 33(2):295-304. PubMed ID: 26594021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition.
    Wei R; Oeser T; Schmidt J; Meier R; Barth M; Then J; Zimmermann W
    Biotechnol Bioeng; 2016 Aug; 113(8):1658-65. PubMed ID: 26804057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca.
    Then J; Wei R; Oeser T; Barth M; Belisário-Ferrari MR; Schmidt J; Zimmermann W
    Biotechnol J; 2015 Apr; 10(4):592-8. PubMed ID: 25545638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput assay for enzymatic polyester hydrolysis activity by fluorimetric detection.
    Wei R; Oeser T; Billig S; Zimmermann W
    Biotechnol J; 2012 Dec; 7(12):1517-21. PubMed ID: 22623363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable refractive index sensor with ultracompact structure twisted by poly(trimethylene terephthalate) nanowires.
    Zhu H; Wang Y; Li B
    ACS Nano; 2009 Oct; 3(10):3110-4. PubMed ID: 19746952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyester hydrolysis is enhanced by a truncated esterase: Less is more.
    Biundo A; Ribitsch D; Steinkellner G; Gruber K; Guebitz GM
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 27687520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic biodegradation of poly(ethylene terephthalate) using Microbacterium oleivorans and Thermobifida fusca cutinase.
    Yan ZF; Wang L; Xia W; Liu ZZ; Gu LT; Wu J
    Appl Microbiol Biotechnol; 2021 Jun; 105(11):4551-4560. PubMed ID: 34037842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Thermobifida fusca cutinase with increased activity on polyester substrates.
    Silva C; Da S; Silva N; Matamá T; Araújo R; Martins M; Chen S; Chen J; Wu J; Casal M; Cavaco-Paulo A
    Biotechnol J; 2011 Oct; 6(10):1230-9. PubMed ID: 21751386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.