These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18406649)

  • 41. Measuring (13)C/(15)N chemical shift anisotropy in [(13)C,(15)N] uniformly enriched proteins using CSA amplification.
    Hung I; Ge Y; Liu X; Liu M; Li C; Gan Z
    Solid State Nucl Magn Reson; 2015 Nov; 72():96-103. PubMed ID: 26404770
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Achieving pure spin effects by artifact suppression in methyl adiabatic relaxation experiments.
    Chao FA; Khago D; Byrd RA
    J Biomol NMR; 2020 May; 74(4-5):223-228. PubMed ID: 32333192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of the internal structure and dynamics of cellulose by
    Ghosh M; Kango N; Dey KK
    J Biomol NMR; 2019 Nov; 73(10-11):601-616. PubMed ID: 31414362
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cross correlations between 13C-1H dipolar interactions and 15N chemical shift anisotropy in nucleic acids.
    Ravindranathan S; Kim CH; Bodenhausen G
    J Biomol NMR; 2003 Dec; 27(4):365-75. PubMed ID: 14512733
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pairwise NMR experiments for the determination of protein backbone dihedral angle Phi based on cross-correlated spin relaxation.
    Takahashi H; Shimada I
    J Biomol NMR; 2007 Mar; 37(3):179-85. PubMed ID: 17237977
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids.
    Fiala R; Czernek J; Sklenár V
    J Biomol NMR; 2000 Apr; 16(4):291-302. PubMed ID: 10826881
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TRACT revisited: an algebraic solution for determining overall rotational correlation times from cross-correlated relaxation rates.
    Robson SA; Dağ Ç; Wu H; Ziarek JJ
    J Biomol NMR; 2021 Sep; 75(8-9):293-302. PubMed ID: 34480265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estimates of methyl 13C and 1H CSA values (Deltasigma) in proteins from cross-correlated spin relaxation.
    Tugarinov V; Scheurer C; Brüschweiler R; Kay LE
    J Biomol NMR; 2004 Dec; 30(4):397-406. PubMed ID: 15630560
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Off-resonance R(1rho) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain.
    Korzhnev DM; Orekhov VY; Kay LE
    J Am Chem Soc; 2005 Jan; 127(2):713-21. PubMed ID: 15643897
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Separation of anisotropy and exchange broadening using (15)N CSA-(15)N-(1)H dipole-dipole relaxation cross-correlation experiments.
    Renner C; Holak TA
    J Magn Reson; 2000 Aug; 145(2):192-200. PubMed ID: 10910687
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements.
    Ying J; Grishaev A; Bryce DL; Bax A
    J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comprehensive analysis of multifield 15N relaxation parameters in proteins: determination of 15N chemical shift anisotropies.
    Canet D; Barthe P; Mutzenhardt P; Roumestand C
    J Am Chem Soc; 2001 May; 123(19):4567-76. PubMed ID: 11457243
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The direct DIVAM experiment: a spin dynamics analysis.
    Hazendonk P; Wormald P; Montina T
    J Phys Chem A; 2008 Jul; 112(28):6262-74. PubMed ID: 18570361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measurement of homonuclear magnetic dipole-dipole interactions in multiple 1/2-spin systems using constant-time DQ-DRENAR NMR.
    Ren J; Eckert H
    J Magn Reson; 2015 Nov; 260():46-53. PubMed ID: 26397219
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A phase cycle scheme that significantly suppresses offset-dependent artifacts in the R2-CPMG 15N relaxation experiment.
    Yip GN; Zuiderweg ER
    J Magn Reson; 2004 Nov; 171(1):25-36. PubMed ID: 15504678
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carbon-13 chemical shift anisotropy in DNA bases from field dependence of solution NMR relaxation rates.
    Ying J; Grishaev A; Bax A
    Magn Reson Chem; 2006 Mar; 44(3):302-10. PubMed ID: 16477676
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using Paramagnetism to Slow Down Nuclear Relaxation in Protein NMR.
    Orton HW; Kuprov I; Loh CT; Otting G
    J Phys Chem Lett; 2016 Dec; 7(23):4815-4818. PubMed ID: 27934036
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Refocusing CSA during magic angle spinning rotating-frame relaxation experiments.
    Keeler EG; Fritzsching KJ; McDermott AE
    J Magn Reson; 2018 Nov; 296():130-137. PubMed ID: 30253322
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct measurement of the 15N CSA/dipolar relaxation interference from coupled HSQC spectra.
    Hall JB; Dayie KT; Fushman D
    J Biomol NMR; 2003 Jun; 26(2):181-6. PubMed ID: 12766413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.