BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18406662)

  • 1. A spectroscopic investigation of the weathering of a heritage Sydney sandstone.
    Ip KH; Stuart BH; Ray AS; Thomas PS
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1032-5. PubMed ID: 18406662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ESEM-EDS investigation of the weathering of a heritage Sydney sandstone.
    Ip KH; Stuart B; Ray A; Thomas P
    Microsc Microanal; 2011 Apr; 17(2):292-5. PubMed ID: 21126385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the surface areas of silica and clay in acid-leached clay materials using concepts of adsorption on heterogeneous surfaces.
    Nguetnkam JP; Kamga R; Villiéras F; Ekodeck GE; Razafitianamaharavo A; Yvon J
    J Colloid Interface Sci; 2005 Sep; 289(1):104-15. PubMed ID: 16009222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite--a mid-infrared and near-infrared study.
    Cheng H; Yang J; Liu Q; Zhang J; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Nov; 77(4):856-61. PubMed ID: 20807679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coating of silica sand with aluminosilicate clay.
    Jerez J; Flury M; Shang J; Deng Y
    J Colloid Interface Sci; 2006 Feb; 294(1):155-64. PubMed ID: 16085082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SO2 gas adsorption by modified kaolin clays: influence of previous heating and time acid treatments.
    Volzone C; Ortiga J
    J Environ Manage; 2011 Oct; 92(10):2590-5. PubMed ID: 21696883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay.
    Jiang MQ; Wang QP; Jin XY; Chen ZL
    J Hazard Mater; 2009 Oct; 170(1):332-9. PubMed ID: 19464114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite.
    Cheng H; Frost RL; Yang J; Liu Q; He J
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1014-20. PubMed ID: 20864389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.
    Cai L; Tong M; Wang X; Kim H
    Environ Sci Technol; 2014 Jul; 48(13):7323-32. PubMed ID: 24911544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT.
    Kang S; Xing B
    Langmuir; 2007 Jun; 23(13):7024-31. PubMed ID: 17508766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of N-tallow 1,3-propanediamine-dioleate collector on albite and quartz minerals, and selective flotation of albite from greek stefania feldspar ore.
    Vidyadhar A; Hanumantha Rao K; Forssberg KS
    J Colloid Interface Sci; 2002 Apr; 248(1):19-29. PubMed ID: 16290498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoacoustic infrared spectroscopy of Syncrude post-extraction oil sand.
    Michaelian KH; Hall RH; Kenny KI
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jun; 64(3):703-10. PubMed ID: 16388979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared spectroscopic studies of the effect of elevated temperature on the association of pyroglutamic acid with clay and other minerals.
    Macklin JW; White DH
    Spectrochim Acta A; 1985; 41(6):851-9. PubMed ID: 11540858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The determination of kaolinite clay content in limestones of western Tamil Nadu by methylene blue adsorption using UV-vis spectroscopy.
    Ramasamy V; Anandalakshmi K
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):25-9. PubMed ID: 17884718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiological impacts of the usability of clay and kaolin as raw material in manufacturing of structural building materials in Turkey.
    Turhan S
    J Radiol Prot; 2009 Mar; 29(1):75-83. PubMed ID: 19225184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comment on "A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite--a mid-infrared and near-infrared study" and "Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite" by Hongfei Cheng et al. (2010).
    Kloprogge JT
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():175-7. PubMed ID: 25281060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of kaolinite of the Baten El-Ghoul region/south Jordan by infrared spectroscopy.
    Qtaitat MA; Al-Trawneh IN
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 May; 61(7):1519-23. PubMed ID: 15820885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by DNase.
    Cai P; Huang QY; Zhang XW
    Environ Sci Technol; 2006 May; 40(9):2971-6. PubMed ID: 16719099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FT-IR characterization of articulated ceramic bricks with wastes from ceramic industries.
    Nirmala G; Viruthagiri G
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 126():129-34. PubMed ID: 24594884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigations of Fe2+ complexation on nontronite clay.
    Merola RB; Fournier ED; McGuire MM
    Langmuir; 2007 Jan; 23(3):1223-6. PubMed ID: 17241036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.