BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18407664)

  • 1. Structural changes of horse heart ferricytochrome C induced by changes of ionic strength and anion binding.
    Shah R; Schweitzer-Stenner R
    Biochemistry; 2008 May; 47(18):5250-7. PubMed ID: 18407664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal electric field in cytochrome C explored by visible electronic circular dichroism spectroscopy.
    Schweitzer-Stenner R
    J Phys Chem B; 2008 Aug; 112(33):10358-66. PubMed ID: 18665633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational substates of horse heart cytochrome c exhibit different thermal unfolding of the heme cavity.
    Schweitzer-Stenner R; Shah R; Hagarman A; Dragomir I
    J Phys Chem B; 2007 Aug; 111(32):9603-7. PubMed ID: 17628093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational substates of ferricytochrome c revealed by combined optical absorption and electronic circular dichroism spectroscopy at cryogenic temperature.
    Spilotros A; Levantino M; Cupane A
    Biophys Chem; 2010 Mar; 147(1-2):8-12. PubMed ID: 20022687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pH dependence of the 695 nm charge transfer band reveals the population of an intermediate state of the alkaline transition of ferricytochrome c at low ion concentrations.
    Verbaro D; Hagarman A; Soffer J; Schweitzer-Stenner R
    Biochemistry; 2009 Apr; 48(13):2990-6. PubMed ID: 19222214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into cytochrome c-cardiolipin interaction. Role played by ionic strength.
    Sinibaldi F; Fiorucci L; Patriarca A; Lauceri R; Ferri T; Coletta M; Santucci R
    Biochemistry; 2008 Jul; 47(26):6928-35. PubMed ID: 18540683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of cyanide binding as a probe of local stability/flexibility of cytochrome c.
    Varhac R; Tomásková N; Fabián M; Sedlák E
    Biophys Chem; 2009 Sep; 144(1-2):21-6. PubMed ID: 19545938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical band splitting and electronic perturbations of the heme chromophore in cytochrome C at room temperature probed by visible electronic circular dichroism spectroscopy.
    Dragomir I; Hagarman A; Wallace C; Schweitzer-Stenner R
    Biophys J; 2007 Feb; 92(3):989-98. PubMed ID: 17098790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt-induced formation of the A-state of ferricytochrome c--effect of the anion charge on protein structure.
    Sinibaldi F; Piro MC; Coletta M; Santucci R
    FEBS J; 2006 Dec; 273(23):5347-57. PubMed ID: 17059462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic docking and electron-transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes.
    Liang ZX; Kurnikov IV; Nocek JM; Mauk AG; Beratan DN; Hoffman BM
    J Am Chem Soc; 2004 Mar; 126(9):2785-98. PubMed ID: 14995196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-native heme-histidine ligation promotes microsecond time scale secondary structure formation in reduced horse heart cytochrome c.
    Chen E; Abel CJ; Goldbeck RA; Kliger DS
    Biochemistry; 2007 Oct; 46(43):12463-72. PubMed ID: 17914866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of an equilibrium unfolding intermediate in cytochrome c.
    Latypov RF; Cheng H; Roder NA; Zhang J; Roder H
    J Mol Biol; 2006 Mar; 357(3):1009-25. PubMed ID: 16473367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of NaCl and sorbitol on the stability of conformations of cytochrome c.
    Bágel'ová J; Fedunová D; Gazová Z; Fabian M; Antalík M
    Biophys Chem; 2008 Jun; 135(1-3):110-5. PubMed ID: 18433978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of an anticancer ruthenium complex HInd[RuInd2Cl4] with cytochrome c.
    Trynda-Lemiesz L
    Acta Biochim Pol; 2004; 51(1):199-205. PubMed ID: 15094840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-dependent conformational changes of ferricytochrome c induced by electrode surface microstructure.
    Jiang X; Qu X; Zhang L; Zhang Z; Jiang J; Wang E; Dong S
    Biophys Chem; 2004 Aug; 110(3):203-11. PubMed ID: 15228956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo.
    Lee I; Salomon AR; Yu K; Doan JW; Grossman LI; Hüttemann M
    Biochemistry; 2006 Aug; 45(30):9121-8. PubMed ID: 16866357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stop-flow kinetics studies of the interaction of surfactant, sodium dodecyl sulfate, with acid-denatured cytochrome c.
    Xu Q; Keiderling TA
    Proteins; 2006 May; 63(3):571-80. PubMed ID: 16586446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural analysis of the transient interaction between the cytochrome bc1 complex and its substrate cytochrome c.
    Nyola A; Hunte C
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):981-5. PubMed ID: 18793174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of single-site charge-reversal mutations on the catalytic properties of yeast cytochrome c peroxidase: evidence for a single, catalytically active, cytochrome c binding domain.
    Pearl NM; Jacobson T; Meyen C; Clementz AG; Ok EY; Choi E; Wilson K; Vitello LB; Erman JE
    Biochemistry; 2008 Mar; 47(9):2766-75. PubMed ID: 18232645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.