These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18407863)

  • 1. A comparison of time-domain solutions for the full-wave equation and the parabolic wave equation for a diagnostic ultrasound transducer.
    Pinton GF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):730-3. PubMed ID: 18407863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An iterative method for the computation of nonlinear, wide-angle, pulsed acoustic fields of medical diagnostic transducers.
    Huijssen J; Verweij MD
    J Acoust Soc Am; 2010 Jan; 127(1):33-44. PubMed ID: 20058948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parametric study of ultrasonic beam profiles for a linear phased array transducer.
    Lee JH; Choi SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):644-50. PubMed ID: 18238592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach.
    Du Y; Jensen JA
    Ultrasonics; 2013 Feb; 53(2):588-94. PubMed ID: 23141667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave chaos and mode-medium resonances at long-range sound propagation in the ocean.
    Smirnov IP; Virovlyansky AL; Zaslavsky GM
    Chaos; 2004 Jun; 14(2):317-32. PubMed ID: 15189059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations.
    Lu JY; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(1):19-31. PubMed ID: 18263114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations and measurements of 3-D ultrasonic fields radiated by phased-array transducers using the westervelt equation.
    Doinikov AA; Novell A; Calmon P; Bouakaz A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1470-7. PubMed ID: 25167147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave guide imaging through Time Domain Topological Energy.
    Gibiat V; Sahuguet P
    Ultrasonics; 2010 Feb; 50(2):172-9. PubMed ID: 19857887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined parabolic-integral equation approach to the acoustic simulation of vibro-acoustic imaging.
    Malcolm AE; Reitich F; Yang J; Greenleaf JF; Fatemi M
    Ultrasonics; 2008 Nov; 48(6-7):553-8. PubMed ID: 18538811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger's perfectly matched layers.
    Sheu YL; Li PC
    J Acoust Soc Am; 2008 Dec; 124(6):3471-80. PubMed ID: 19206776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A heterogeneous nonlinear attenuating full-wave model of ultrasound.
    Pinton GF; Dahl J; Rosenzweig S; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):474-88. PubMed ID: 19411208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The design and characterization of an ultrasound phased array suitable for deep tissue hyperthermia.
    Aitkenhead AH; Mills JA; Wilson AJ
    Ultrasound Med Biol; 2008 Nov; 34(11):1793-807. PubMed ID: 18571831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaussian representation of high-intensity focused ultrasound beams.
    Soneson JE; Myers MR
    J Acoust Soc Am; 2007 Nov; 122(5):2526-31. PubMed ID: 18189543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfectly matched layers for frequency-domain integral equation acoustic scattering problems.
    Alles EJ; van Dongen KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1077-86. PubMed ID: 21622063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of thermally induced photoacoustic wave propagation using a pseudospectral time-domain method.
    Sheu YL; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1104-12. PubMed ID: 19473928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C
    J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier-Bessel field calculation and tuning of a CW annular array.
    Fox PD; Cheng J; Lu JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Sep; 49(9):1179-90. PubMed ID: 12243569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear parabolic equation model for finite-amplitude sound propagation over porous ground layers.
    Leissing T; Jean P; Defrance J; Soize C
    J Acoust Soc Am; 2009 Aug; 126(2):572-81. PubMed ID: 19640021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.