These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18407930)

  • 1. Enhanced robotic surgical training using augmented visual feedback.
    Judkins TN; Oleynikov D; Stergiou N
    Surg Innov; 2008 Mar; 15(1):59-68. PubMed ID: 18407930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromyographic response is altered during robotic surgical training with augmented feedback.
    Judkins TN; Oleynikov D; Stergiou N
    J Biomech; 2009 Jan; 42(1):71-6. PubMed ID: 19041972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time augmented feedback benefits robotic laparoscopic training.
    Judkins TN; Oleynikov D; Stergiou N
    Stud Health Technol Inform; 2006; 119():243-8. PubMed ID: 16404053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skills learning in robot-assisted surgery is benefited by task-specific augmented feedback.
    Vallabhajosula S; Judkins TN; Mukherjee M; Suh IH; Oleynikov D; Siu KC
    Surg Innov; 2013 Dec; 20(6):639-47. PubMed ID: 23575913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning spinal manipulation: the importance of augmented feedback relating to various kinetic parameters.
    Descarreaux M; Dugas C; Lalanne K; Vincelette M; Normand MC
    Spine J; 2006; 6(2):138-45. PubMed ID: 16517384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tele-surgery simulation with a patient organ model for robotic surgery training.
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Konishi K; Kakeji Y; Hashizume M
    Int J Med Robot; 2005 Dec; 1(4):80-8. PubMed ID: 17518408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Objective assessment of training surgical skills using simulated tissue interface with real-time feedback.
    Rafiq A; Tamariz F; Boanca C; Lavrentyev V; Merrell RC
    J Surg Educ; 2008; 65(4):270-4. PubMed ID: 18707659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of environmental noise on robot-assisted laparoscopic surgical performance.
    Siu KC; Suh IH; Mukherjee M; Oleynikov D; Stergiou N
    Surgery; 2010 Jan; 147(1):107-13. PubMed ID: 19879611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closing the gap in operative performance between novices and experts: does harder mean better for laparoscopic simulator training?
    Stefanidis D; Korndorffer JR; Markley S; Sierra R; Heniford BT; Scott DJ
    J Am Coll Surg; 2007 Aug; 205(2):307-13. PubMed ID: 17660078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.
    Kitagawa M; Dokko D; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2005 Jan; 129(1):151-8. PubMed ID: 15632837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Training in tele-surgery and robotic surgery: six years experience].
    Rodríguez E; Wiley Nifong L; Chitwood WR
    Arch Esp Urol; 2007 May; 60(4):363-9. PubMed ID: 17626528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of reducing frequency of augmented feedback on manual dexterity training and its retention.
    Wierinck E; Puttemans V; van Steenberghe D
    J Dent; 2006 Oct; 34(9):641-7. PubMed ID: 16413652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of haptic learning in telemanipulator-assisted surgery.
    Jacobs S; Holzhey D; Strauss G; Burgert O; Falk V
    Surg Laparosc Endosc Percutan Tech; 2007 Oct; 17(5):402-6. PubMed ID: 18049401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and testing of a tactile feedback system for robotic surgery.
    Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP
    Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A virtual reality training program for improvement of robotic surgical skills.
    Mukherjee M; Siu KC; Suh IH; Klutman A; Oleynikov D; Stergiou N
    Stud Health Technol Inform; 2009; 142():210-4. PubMed ID: 19377151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishing a training program for residents in robotic surgery.
    Moles JJ; Connelly PE; Sarti EE; Baredes S
    Laryngoscope; 2009 Oct; 119(10):1927-31. PubMed ID: 19655337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Face validation of a novel robotic surgical simulator.
    Seixas-Mikelus SA; Kesavadas T; Srimathveeravalli G; Chandrasekhar R; Wilding GE; Guru KA
    Urology; 2010 Aug; 76(2):357-60. PubMed ID: 20299081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of tutorial input in addition to augmented feedback on manual dexterity training and its retention.
    Wierinck E; Puttemans V; van Steenberghe D
    Eur J Dent Educ; 2006 Feb; 10(1):24-31. PubMed ID: 16436081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of two forms of feedback on training of a joint mobilization skill by using a joint translation simulator.
    Chang JY; Chang GL; Chien CJ; Chung KC; Hsu AT
    Phys Ther; 2007 Apr; 87(4):418-30. PubMed ID: 17341511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.