These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry. Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783 [TBL] [Abstract][Full Text] [Related]
4. Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins. Ge R; Sun X; Xiao C; Yin X; Shan W; Chen Z; He QY Proteomics; 2011 Apr; 11(8):1449-61. PubMed ID: 21360674 [TBL] [Abstract][Full Text] [Related]
5. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells. Henry M; Coleman O; Prashant ; Clynes M; Meleady P Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132 [TBL] [Abstract][Full Text] [Related]
6. Development and application of a phosphoproteomic method using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC), IMAC, and LC-MS/MS analysis to study Marek's Disease Virus infection. Chien KY; Liu HC; Goshe MB J Proteome Res; 2011 Sep; 10(9):4041-53. PubMed ID: 21736374 [TBL] [Abstract][Full Text] [Related]
7. Novel Online Three-Dimensional Separation Expands the Detectable Functional Landscape of Cellular Phosphoproteome. Kang C; Huh S; Nam D; Kim H; Hong J; Hwang D; Lee SW Anal Chem; 2022 Sep; 94(35):12185-12195. PubMed ID: 35994246 [TBL] [Abstract][Full Text] [Related]
8. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139 [TBL] [Abstract][Full Text] [Related]
9. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides. Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066 [TBL] [Abstract][Full Text] [Related]
10. Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Han G; Ye M; Zou H Analyst; 2008 Sep; 133(9):1128-38. PubMed ID: 18709185 [TBL] [Abstract][Full Text] [Related]
11. TIMAHAC: Streamlined Tandem IMAC-HILIC Workflow for Simultaneous and High-Throughput Plant Phosphoproteomics and N-glycoproteomics. Chen CW; Lin PY; Lai YM; Lin MH; Lin SY; Hsu CC Mol Cell Proteomics; 2024 May; 23(5):100762. PubMed ID: 38608839 [TBL] [Abstract][Full Text] [Related]
12. Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae. Schreiber TB; Mäusbacher N; Soroka J; Wandinger SK; Buchner J; Daub H J Proteome Res; 2012 Apr; 11(4):2397-408. PubMed ID: 22369663 [TBL] [Abstract][Full Text] [Related]
13. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells. Bridon G; Bonneil E; Muratore-Schroeder T; Caron-Lizotte O; Thibault P J Proteome Res; 2012 Feb; 11(2):927-40. PubMed ID: 22059388 [TBL] [Abstract][Full Text] [Related]
14. Rapid Shotgun Phosphoproteomics Analysis. Carrera M; Cañas B; Lopez-Ferrer D Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721 [TBL] [Abstract][Full Text] [Related]
15. A novel multidimensional protein identification technology approach combining protein size exclusion prefractionation, peptide zwitterion-ion hydrophilic interaction chromatography, and nano-ultraperformance RP chromatography/nESI-MS2 for the in-depth analysis of the serum proteome and phosphoproteome: application to clinical sera derived from humans with benign prostate hyperplasia. Garbis SD; Roumeliotis TI; Tyritzis SI; Zorpas KM; Pavlakis K; Constantinides CA Anal Chem; 2011 Feb; 83(3):708-18. PubMed ID: 21174401 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor. Zhou H; Elisma F; Denis NJ; Wright TG; Tian R; Zhou H; Hou W; Zou H; Figeys D J Proteome Res; 2010 Mar; 9(3):1279-88. PubMed ID: 20067319 [TBL] [Abstract][Full Text] [Related]
17. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements. Taumer C; Griesbaum L; Kovacevic A; Soufi B; Nalpas NC; Macek B J Proteomics; 2018 Oct; 189():60-66. PubMed ID: 29605292 [TBL] [Abstract][Full Text] [Related]
18. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods. Chen X; Wu D; Zhao Y; Wong BH; Guo L J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation-specific MS/MS scoring for rapid and accurate phosphoproteome analysis. Payne SH; Yau M; Smolka MB; Tanner S; Zhou H; Bafna V J Proteome Res; 2008 Aug; 7(8):3373-81. PubMed ID: 18563926 [TBL] [Abstract][Full Text] [Related]