These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 18407956)
41. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio). Kwon OK; Kim SJ; Lee YM; Lee YH; Bae YS; Kim JY; Peng X; Cheng Z; Zhao Y; Lee S Proteomics; 2016 Jan; 16(1):136-49. PubMed ID: 26449285 [TBL] [Abstract][Full Text] [Related]
42. Phosphoproteome of human glioblastoma initiating cells reveals novel signaling regulators encoded by the transcriptome. Kozuka-Hata H; Nasu-Nishimura Y; Koyama-Nasu R; Ao-Kondo H; Tsumoto K; Akiyama T; Oyama M PLoS One; 2012; 7(8):e43398. PubMed ID: 22912867 [TBL] [Abstract][Full Text] [Related]
43. Analytical strategies in mass spectrometry-based phosphoproteomics. Rosenqvist H; Ye J; Jensen ON Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124 [TBL] [Abstract][Full Text] [Related]
44. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry. Kota U; Chien KY; Goshe MB Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030 [TBL] [Abstract][Full Text] [Related]
45. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. Sun X; Ge F; Xiao CL; Yin XF; Ge R; Zhang LH; He QY J Proteome Res; 2010 Jan; 9(1):275-82. PubMed ID: 19894762 [TBL] [Abstract][Full Text] [Related]
46. Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions. Rampitsch C; Tinker NA; Subramaniam R; Barkow-Oesterreicher S; Laczko E Proteomics; 2012 Apr; 12(7):1002-5. PubMed ID: 22522806 [TBL] [Abstract][Full Text] [Related]
47. Phosphoproteomic analysis provides novel insights into stress responses in Phaeodactylum tricornutum, a model diatom. Chen Z; Yang MK; Li CY; Wang Y; Zhang J; Wang DB; Zhang XE; Ge F J Proteome Res; 2014 May; 13(5):2511-23. PubMed ID: 24712722 [TBL] [Abstract][Full Text] [Related]
48. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics. Chen Y; Hoehenwarter W Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143 [TBL] [Abstract][Full Text] [Related]
49. Fractionation of Enriched Phosphopeptides Using pH/Acetonitrile-Gradient-Reversed-Phase Microcolumn Separation in Combination with LC-MS/MS Analysis. Ondrej M; Rehulka P; Rehulkova H; Kupcik R; Tichy A Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32492839 [TBL] [Abstract][Full Text] [Related]
50. An optimized platform for hydrophilic interaction chromatography-immobilized metal affinity chromatography enables deep coverage of the rat liver phosphoproteome. Zappacosta F; Scott GF; Huddleston MJ; Annan RS J Proteome Res; 2015 Feb; 14(2):997-1009. PubMed ID: 25575281 [TBL] [Abstract][Full Text] [Related]
51. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related]
52. Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage. Batth TS; Olsen JV Methods Mol Biol; 2016; 1355():179-92. PubMed ID: 26584926 [TBL] [Abstract][Full Text] [Related]
53. High pH Reversed-Phase Micro-Columns for Simple, Sensitive, and Efficient Fractionation of Proteome and (TMT labeled) Phosphoproteome Digests. Ruprecht B; Zecha J; Zolg DP; Kuster B Methods Mol Biol; 2017; 1550():83-98. PubMed ID: 28188525 [TBL] [Abstract][Full Text] [Related]
54. Proteomic and phosphoproteomic analysis of chicken embryo fibroblasts infected with cell culture-attenuated and vaccine strains of Marek's disease virus. Chien KY; Blackburn K; Liu HC; Goshe MB J Proteome Res; 2012 Dec; 11(12):5663-77. PubMed ID: 23106611 [TBL] [Abstract][Full Text] [Related]
55. Integration of conventional quantitative and phospho-proteomics reveals new elements in activated Jurkat T-cell receptor pathway maintenance. Jouy F; Müller SA; Wagner J; Otto W; von Bergen M; Tomm JM Proteomics; 2015 Jan; 15(1):25-33. PubMed ID: 25348772 [TBL] [Abstract][Full Text] [Related]
56. Integrative network analysis of signaling in human CD34(+) hematopoietic progenitor cells by global phosphoproteomic profiling using TiO2 enrichment combined with 2D LC-MS/MS and pathway mapping. Guo H; Isserlin R; Chen X; Wang W; Phanse S; Zandstra PW; Paddison PJ; Emili A Proteomics; 2013 Apr; 13(8):1325-33. PubMed ID: 23401153 [TBL] [Abstract][Full Text] [Related]
57. Simultaneous analysis of proteome, phospho- and glycoproteome of rat kidney tissue with electrostatic repulsion hydrophilic interaction chromatography. Hao P; Guo T; Sze SK PLoS One; 2011 Feb; 6(2):e16884. PubMed ID: 21373199 [TBL] [Abstract][Full Text] [Related]
58. MALDI-TOF and nESI Orbitrap MS/MS identify orthogonal parts of the phosphoproteome. Ruprecht B; Roesli C; Lemeer S; Kuster B Proteomics; 2016 May; 16(10):1447-56. PubMed ID: 26990019 [TBL] [Abstract][Full Text] [Related]
59. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. Moser K; White FM J Proteome Res; 2006 Jan; 5(1):98-104. PubMed ID: 16396499 [TBL] [Abstract][Full Text] [Related]
60. An initial characterization of the serum phosphoproteome. Zhou W; Ross MM; Tessitore A; Ornstein D; Vanmeter A; Liotta LA; Petricoin EF J Proteome Res; 2009 Dec; 8(12):5523-31. PubMed ID: 19824718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]