BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 18408030)

  • 1. Surface viscoelasticity of individual gram-negative bacterial cells measured using atomic force microscopy.
    Vadillo-Rodriguez V; Beveridge TJ; Dutcher JR
    J Bacteriol; 2008 Jun; 190(12):4225-32. PubMed ID: 18408030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy.
    Lau PC; Dutcher JR; Beveridge TJ; Lam JS
    Biophys J; 2009 Apr; 96(7):2935-48. PubMed ID: 19348775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power Laws Describe Bacterial Viscoelasticity.
    Weber A; Tyrakowski D; Toca-Herrera JL
    Langmuir; 2022 Dec; 38(50):15552-15558. PubMed ID: 36484724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy evaluation of the effects of a novel antimicrobial multimeric peptide on Pseudomonas aeruginosa.
    Rossetto G; Bergese P; Colombi P; Depero LE; Giuliani A; Nicoletto SF; Pirri G
    Nanomedicine; 2007 Sep; 3(3):198-207. PubMed ID: 17702663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the nanomechanical properties of the fission yeast (Schizosaccharomyces pombe) cell surface by atomic force microscopy.
    Gibbs E; Hsu J; Barth K; Goss JW
    Yeast; 2021 Aug; 38(8):480-492. PubMed ID: 33913187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
    Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML
    Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of glutaraldehyde fixation on bacterial cells observed by atomic force microscopy.
    Liu BY; Zhang GM; Li XL; Chen H
    Scanning; 2012; 34(1):6-11. PubMed ID: 21898456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics of Bacterial Cells and Initial Surface Colonisation.
    Aguayo S; Bozec L
    Adv Exp Med Biol; 2016; 915():245-60. PubMed ID: 27193547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation of the envelope of a spherical gram-negative bacterium during the atomic force microscopic measurements.
    Boulbitch A
    J Electron Microsc (Tokyo); 2000; 49(3):459-62. PubMed ID: 11108035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain.
    Formosa C; Grare M; Jauvert E; Coutable A; Regnouf-de-Vains JB; Mourer M; Duval RE; Dague E
    Sci Rep; 2012; 2():575. PubMed ID: 22893853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ characterization of differences in the viscoelastic response of individual gram-negative and gram-positive bacterial cells.
    Vadillo-Rodriguez V; Schooling SR; Dutcher JR
    J Bacteriol; 2009 Sep; 191(17):5518-25. PubMed ID: 19581369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy.
    Gaboriaud F; Bailet S; Dague E; Jorand F
    J Bacteriol; 2005 Jun; 187(11):3864-8. PubMed ID: 15901713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution.
    Scheuring S; Dufrêne YF
    Mol Microbiol; 2010 Mar; 75(6):1327-36. PubMed ID: 20132452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae.
    Arfsten J; Leupold S; Bradtmöller C; Kampen I; Kwade A
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):284-90. PubMed ID: 20452756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy (AFM).
    Trache A; Meininger GA
    Curr Protoc Microbiol; 2008 Feb; Chapter 2():Unit 2C.2. PubMed ID: 18770536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quartz tuning fork studies on the surface properties of Pseudomonas aeruginosa during early stages of biofilm formation.
    Otero J; Baños R; González L; Torrents E; Juárez A; Puig-Vidal M
    Colloids Surf B Biointerfaces; 2013 Feb; 102():117-23. PubMed ID: 23018019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale characterization of dynamic cellular viscoelasticity by atomic force microscopy with varying measurement parameters.
    Li M; Liu L; Xu X; Xing X; Dang D; Xi N; Wang Y
    J Mech Behav Biomed Mater; 2018 Jun; 82():193-201. PubMed ID: 29609140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy.
    Putman CA; van der Werf KO; de Grooth BG; van Hulst NF; Greve J
    Biophys J; 1994 Oct; 67(4):1749-53. PubMed ID: 7819507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanical response of bacterial cells to cationic antimicrobial peptides.
    Lu S; Walters G; Parg R; Dutcher JR
    Soft Matter; 2014 Mar; 10(11):1806-15. PubMed ID: 24652481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.
    Cartagena A; Raman A
    Biophys J; 2014 Mar; 106(5):1033-43. PubMed ID: 24606928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.