These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 18408157)
21. HAMP Domain Rotation and Tilting Movements Associated with Signal Transduction in the PhoQ Sensor Kinase. Matamouros S; Hager KR; Miller SI mBio; 2015 May; 6(3):e00616-15. PubMed ID: 26015499 [TBL] [Abstract][Full Text] [Related]
22. Overview of protein phosphorylation in bacteria with a main focus on unusual protein kinases in Bacillus subtilis. Zhang A; Pompeo F; Galinier A Res Microbiol; 2021; 172(7-8):103871. PubMed ID: 34500011 [TBL] [Abstract][Full Text] [Related]
23. SpaK/SpaR two-component system characterized by a structure-driven domain-fusion method and in vitro phosphorylation studies. Chakicherla A; Ecale Zhou CL; Dang ML; Rodriguez V; Hansen JN; Zemla A PLoS Comput Biol; 2009 Jun; 5(6):e1000401. PubMed ID: 19503843 [TBL] [Abstract][Full Text] [Related]
24. Interactions between the YycFG and PhoPR two-component systems in Bacillus subtilis: the PhoR kinase phosphorylates the non-cognate YycF response regulator upon phosphate limitation. Howell A; Dubrac S; Noone D; Varughese KI; Devine K Mol Microbiol; 2006 Feb; 59(4):1199-215. PubMed ID: 16430694 [TBL] [Abstract][Full Text] [Related]
25. Purification and activity testing of the full-length YycFGHI proteins of Staphylococcus aureus. Türck M; Bierbaum G PLoS One; 2012; 7(1):e30403. PubMed ID: 22276191 [TBL] [Abstract][Full Text] [Related]
26. MHYT, a new integral membrane sensor domain. Galperin MY; Gaidenko TA; Mulkidjanian AY; Nakano M; Price CW FEMS Microbiol Lett; 2001 Nov; 205(1):17-23. PubMed ID: 11728710 [TBL] [Abstract][Full Text] [Related]
27. The Single Transmembrane Segment of Minimal Sensor DesK Senses Temperature via a Membrane-Thickness Caliper. Inda ME; Oliveira RG; de Mendoza D; Cybulski LE J Bacteriol; 2016 Nov; 198(21):2945-2954. PubMed ID: 27528507 [TBL] [Abstract][Full Text] [Related]
28. Mutational analysis and membrane topology of ComP, a quorum-sensing histidine kinase of Bacillus subtilis controlling competence development. Piazza F; Tortosa P; Dubnau D J Bacteriol; 1999 Aug; 181(15):4540-8. PubMed ID: 10419951 [TBL] [Abstract][Full Text] [Related]
29. Structure and mechanism of action of Sda, an inhibitor of the histidine kinases that regulate initiation of sporulation in Bacillus subtilis. Rowland SL; Burkholder WF; Cunningham KA; Maciejewski MW; Grossman AD; King GF Mol Cell; 2004 Mar; 13(5):689-701. PubMed ID: 15023339 [TBL] [Abstract][Full Text] [Related]
30. [Sporulation in Bacillus subtilis: signal transduction at the initiation of sporulation]. Kobayashi Y Tanpakushitsu Kakusan Koso; 1995 Jun; 40(8):976-85. PubMed ID: 7610262 [No Abstract] [Full Text] [Related]
31. In vivo functional characterization of the transmembrane histidine kinase KinC in Bacillus subtilis. Devi SN; Vishnoi M; Kiehler B; Haggett L; Fujita M Microbiology (Reading); 2015 May; 161(Pt 5):1092-1104. PubMed ID: 25701730 [TBL] [Abstract][Full Text] [Related]
32. Mutational analysis of the signal-sensing domain of ResE histidine kinase from Bacillus subtilis. Baruah A; Lindsey B; Zhu Y; Nakano MM J Bacteriol; 2004 Mar; 186(6):1694-704. PubMed ID: 14996800 [TBL] [Abstract][Full Text] [Related]
33. The PAS domains of the major sporulation kinase in Bacillus subtilis play a role in tetramer formation that is essential for the autokinase activity. Kiehler B; Haggett L; Fujita M Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28449380 [TBL] [Abstract][Full Text] [Related]
34. Two-tiered histidine kinase pathway involved in heat shock and salt sensing in the general stress response of Sphingomonas melonis Fr1. Kaczmarczyk A; Hochstrasser R; Vorholt JA; Francez-Charlot A J Bacteriol; 2015 Apr; 197(8):1466-77. PubMed ID: 25666137 [TBL] [Abstract][Full Text] [Related]
35. Signal transduction and sporulation in Bacillus subtilis: autophosphorylation of Spo0A, a sporulation initiation gene product. Asayama M; Kobayashi Y Mol Gen Genet; 1993 Apr; 238(1-2):138-44. PubMed ID: 8479420 [TBL] [Abstract][Full Text] [Related]
36. Assembly of the transmembrane domain of E. coli PhoQ histidine kinase: implications for signal transduction from molecular simulations. Lemmin T; Soto CS; Clinthorne G; DeGrado WF; Dal Peraro M PLoS Comput Biol; 2013; 9(1):e1002878. PubMed ID: 23359663 [TBL] [Abstract][Full Text] [Related]
37. High energy exchange: proteins that make or break phosphoramidate bonds. Robinson VL; Stock AM Structure; 1999 Mar; 7(3):R47-53. PubMed ID: 10368305 [TBL] [Abstract][Full Text] [Related]
38. A zipped-helix cap potentiates HAMP domain control of chemoreceptor signaling. Flack CE; Parkinson JS Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3519-E3528. PubMed ID: 29581254 [TBL] [Abstract][Full Text] [Related]
39. Methylatable Signaling Helix Coordinated Inhibitory Receiver Domain in Sensor Kinase Modulates Environmental Stress Response in Bacillus Cereus. Chen JC; Liu JH; Hsu DW; Shu JC; Chen CY; Chen CC PLoS One; 2015; 10(9):e0137952. PubMed ID: 26379238 [TBL] [Abstract][Full Text] [Related]
40. Characterization of the subdomains in the N-terminal region of histidine kinase Hik33 in the cyanobacterium Synechocystis sp. PCC 6803. Shimura Y; Shiraiwa Y; Suzuki I Plant Cell Physiol; 2012 Jul; 53(7):1255-66. PubMed ID: 22555814 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]