These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18408343)

  • 1. Simple flow-through solubility measurement apparatus and its effectiveness for hazard assessment of particles/fibers.
    Oyabu T; Ogami A; Morimoto Y; Myojo T; Murakami M; Yamato H; Tanaka I
    J Occup Health; 2008; 50(3):279-82. PubMed ID: 18408343
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of local and Saharan particles on cardiovascular disease mortality.
    Pérez L; Tobías A; Pey J; Pérez N; Alastuey A; Sunyer J; Querol X
    Epidemiology; 2012 Sep; 23(5):768-9. PubMed ID: 22872119
    [No Abstract]   [Full Text] [Related]  

  • 3. Exposure to particulate matter on an Indian stone-crushing site.
    Semple S; Green DA; McAlpine G; Cowie H; Seaton A
    Occup Environ Med; 2008 May; 65(5):300-5. PubMed ID: 17681995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure assessment and distribution of polychlorinated biphenyls (PCBs) contained in indoor and outdoor dusts and the impacts of particle size and bioaccessibility.
    Wang W; Huang MJ; Zheng JS; Cheung KC; Wong MH
    Sci Total Environ; 2013 Oct; 463-464():1201-9. PubMed ID: 23706479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-resolved particle measurements of polybrominated diphenyl ethers indoors: Implications for sources and human exposure.
    Richman KE; Butt CM; Young CJ
    Environ Toxicol Chem; 2018 Feb; 37(2):481-490. PubMed ID: 28892245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. World Trade Center dust-inhalation: assessing the fallout.
    Furlow B
    Lancet Respir Med; 2015 Sep; 3(9):680-681. PubMed ID: 26277858
    [No Abstract]   [Full Text] [Related]  

  • 7. The legacy of World Trade Center dust.
    Samet JM; Geyh AS; Utell MJ
    N Engl J Med; 2007 May; 356(22):2233-6. PubMed ID: 17538082
    [No Abstract]   [Full Text] [Related]  

  • 8. Respiratory assessment of refractory ceramic fibers in a heating technician population.
    Lucas D; Clamagirand V; Capellmann P; Hervé A; Mauguen G; Le Mer Y; Jegaden D
    J Occup Environ Hyg; 2018 Apr; 15(4):305-310. PubMed ID: 29341858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Worker Exposure and High Time-Resolution Analyses of Process-Related Submicrometre Particle Concentrations at Mixing Stations in Two Paint Factories.
    Koponen IK; Koivisto AJ; Jensen KA
    Ann Occup Hyg; 2015 Jul; 59(6):749-63. PubMed ID: 25863226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing human respiratory adverse effects after acute exposure to particulate matter in conventional and particle-reduced swine building environments.
    Hedelin AS; Sundblad BM; Sahlander K; Wilkinson K; Seisenbaeva G; Kessler V; Larsson K; Palmberg L
    Occup Environ Med; 2016 Oct; 73(10):648-55. PubMed ID: 27378812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Submicron particle monitoring of paving and related road construction operations.
    Freund A; Zuckerman N; Baum L; Milek D
    J Occup Environ Hyg; 2012; 9(5):298-307. PubMed ID: 22500951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in exposure and toxicity assessment of particulate matter: an overview of presentations at the 2009 Toxicology and Risk Assessment Conference.
    Gunasekar PG; Stanek LW
    Toxicol Appl Pharmacol; 2011 Jul; 254(2):141-4. PubMed ID: 21034760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clothing as a transport vector for airborne particles: Chamber study.
    Licina D; Nazaroff WW
    Indoor Air; 2018 May; 28(3):404-414. PubMed ID: 29444354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition, Respirable Fraction and Dissolution Rate of 24 Stone Wool MMVF with their Binder.
    Wohlleben W; Waindok H; Daumann B; Werle K; Drum M; Egenolf H
    Part Fibre Toxicol; 2017 Aug; 14(1):29. PubMed ID: 28784145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of particle exposure in ferrochromium and stainless steel production.
    Järvelä M; Huvinen M; Viitanen AK; Kanerva T; Vanhala E; Uitti J; Koivisto AJ; Junttila S; Luukkonen R; Tuomi T
    J Occup Environ Hyg; 2016 Jul; 13(7):558-68. PubMed ID: 26950803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting EMP hazard: Lessons from studies with inhaled fibrous and non-fibrous nano- and micro-particles.
    Oberdörster G; Graham U
    Toxicol Appl Pharmacol; 2018 Dec; 361():50-61. PubMed ID: 29751048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton ion-microbeam elemental analysis for inhaled particle-induced pulmonary diseases: application for diagnosis and assessment of progression.
    Shimizu Y; Dobashi K
    Curr Med Chem; 2013 Feb; 20(6):789-93. PubMed ID: 23244523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a fibre size-specific job-exposure matrix for airborne asbestos fibres.
    Dement JM; Kuempel ED; Zumwalde RD; Smith RJ; Stayner LT; Loomis D
    Occup Environ Med; 2008 Sep; 65(9):605-12. PubMed ID: 17984198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of PM2.5 carrier components on respiratory health].
    Wang J; Shu JZ; Chen XY
    Zhonghua Jie He He Hu Xi Za Zhi; 2013 Dec; 36(12):970-2. PubMed ID: 24503434
    [No Abstract]   [Full Text] [Related]  

  • 20. Application of Resuspension Data of Respirable Particles for Early Phase Inhalation Following Deposition Contamination in Radiological Emergencies.
    Lange F; Koch W
    Health Phys; 2023 Mar; 124(3):155-165. PubMed ID: 36534040
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.