These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 18409438)

  • 1. Mechanistic analysis of interspecific competition using foraging trade-offs: implications for duck assemblages.
    Gurd DB
    Ecology; 2008 Feb; 89(2):495-505. PubMed ID: 18409438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting resource partitioning and community organization of filter-feeding dabbling ducks from functional morphology.
    Gurd DB
    Am Nat; 2007 Mar; 169(3):334-43. PubMed ID: 17230398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filter-feeding dabbling ducks (Anas spp.) can actively select particles by size.
    Brent Gurd D
    Zoology (Jena); 2006; 109(2):120-6. PubMed ID: 16406531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species composition of dabbling duck assemblages: ecomorphological patterns compared with null models.
    Pöysä H; Elmberg J; Nummi P; Sjöberg K
    Oecologia; 1994 Jul; 98(2):193-200. PubMed ID: 28313977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative morphology and soft tissue histology of the remote-touch bill-tip organ in three ibis species of differing foraging ecology.
    du Toit CJ; Chinsamy A; Cunningham SJ
    J Anat; 2022 Oct; 241(4):966-980. PubMed ID: 35938671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal and interspecific dietary variation in wintering ducks in agricultural landscapes.
    Ando H; Ikeno S; Narita A; Komura T; Takada A; Isagi Y; Oguma H; Inoue T; Takenaka A
    Mol Ecol; 2023 Dec; 32(23):6405-6417. PubMed ID: 35762852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predator size, prey size and threshold food densities of diving ducks: does a common prey base support fewer large animals?
    Richman SE; Lovvorn JR
    J Anim Ecol; 2009 Sep; 78(5):1033-42. PubMed ID: 19426253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential resource selection within shared habitat types across spatial scales in sympatric toads.
    Indermaur L; Winzeler T; Schmidt BR; Tockner K; Schaub M
    Ecology; 2009 Dec; 90(12):3430-44. PubMed ID: 20120811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interspecific interactions and co-existence in dabbling ducks: observations and an experiment.
    Elmberg J; Pöysä H; Sjöberg K; Nummi P
    Oecologia; 1997 Jun; 111(1):129-136. PubMed ID: 28307498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diet niche relationships among North American grassland and shrubsteppe birds.
    Wiens JA; Rotenberry JT
    Oecologia; 1979 Oct; 42(3):253-292. PubMed ID: 28309503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of density dependence in ducks: importance of space and per capita food.
    Nummi P; Holopainen S; Rintala J; Pöysä H
    Oecologia; 2015 Mar; 177(3):679-688. PubMed ID: 25398723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One meadow for two sparrows: resource partitioning in a high elevation habitat.
    Beaulieu M; Sockman KW
    Oecologia; 2012 Oct; 170(2):529-40. PubMed ID: 22526943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed-resource dynamics constrain the evolution of predator-prey interactions.
    Friman VP; Laakso J
    Am Nat; 2011 Mar; 177(3):334-45. PubMed ID: 21460542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human access constrains optimal foraging and habitat availability in an avian generalist.
    Masto NM; Blake-Bradshaw AG; Highway CJ; Keever AC; Feddersen JC; Hagy HM; Cohen BS
    Ecol Appl; 2024 Apr; 34(3):e2952. PubMed ID: 38417451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snake co-occurrence patterns are best explained by habitat and hypothesized effects of interspecific interactions.
    Steen DA; McClure CJ; Brock JC; Craig Rudolph D; Pierce JB; Lee JR; Jeffrey Humphries W; Gregory BB; Sutton WB; Smith LL; Baxley DL; Stevenson DJ; Guyer C
    J Anim Ecol; 2014 Jan; 83(1):286-95. PubMed ID: 23998642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium coexistence in a competition model with nutrient storage.
    Revilla T; Weissing FJ
    Ecology; 2008 Mar; 89(3):865-77. PubMed ID: 18459349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of foraging thresholds and effects of application on energetic carrying capacity for waterfowl.
    Hagy HM; Kaminski RM
    PLoS One; 2015; 10(3):e0118349. PubMed ID: 25790255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resource partitioning or reproductive isolation: the ecological role of body size differences among closely related species in sympatry.
    Okuzaki Y; Takami Y; Sota T
    J Anim Ecol; 2010 Mar; 79(2):383-92. PubMed ID: 20002860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trade-offs, temporal variation, and species coexistence in communities with intraguild predation.
    Amarasekare P
    Ecology; 2007 Nov; 88(11):2720-8. PubMed ID: 18051639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of habitat fragmentation on persistence of source-sink metapopulations in systems with predators and prey or apparent competitors.
    Namba T; Umemoto A; Minami E
    Theor Popul Biol; 1999 Aug; 56(1):123-37. PubMed ID: 10438673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.