These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 18409653)

  • 1. Phylogeny and growth strategy as predictors of differences in cobalt concentrations between plant species.
    Willey NJ; Wilkins J
    Environ Sci Technol; 2008 Mar; 42(6):2162-7. PubMed ID: 18409653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting inter-taxa differences in plant uptake of cesium-134/137.
    Willey NJ; Tang S; Watt NR
    J Environ Qual; 2005; 34(5):1478-89. PubMed ID: 16091600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-taxa differences in root uptake of 103/106Ru by plants.
    Willey NJ; Fawcett K
    J Environ Radioact; 2006; 86(2):227-40. PubMed ID: 16256252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species selection for phytoremediation of 36Cl/35Cl using angiosperm phylogeny and inter-taxa differences in uptake.
    Willey N; Fawcett K
    Int J Phytoremediation; 2005; 7(4):295-306. PubMed ID: 16463542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in the shoot calcium content of angiosperms.
    Broadley MR; Bowen HC; Cotterill HL; Hammond JP; Meacham MC; Mead A; White PJ
    J Exp Bot; 2003 May; 54(386):1431-46. PubMed ID: 12709490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogeny can be used to make useful predictions of soil-to-plant transfer factors for radionuclides.
    Willey NJ
    Radiat Environ Biophys; 2010 Nov; 49(4):613-23. PubMed ID: 20809227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic variation in the tolerance and uptake of organic contaminants.
    Collins CD; Willey NJ
    Int J Phytoremediation; 2009 Sep; 11(7):623-39. PubMed ID: 19810359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential phytoavailability of anthropogenic cobalt in soils as measured by isotope dilution techniques.
    Bakkaus E; Collins RN; Morel JL; Gouget B
    Sci Total Environ; 2008 Nov; 406(1-2):108-15. PubMed ID: 18762325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of plant traits and phylogeny on soil-to-plant transfer of 99Tc.
    Willey NJ; Tang S; McEwen A; Hicks S
    J Environ Radioact; 2010 Sep; 101(9):757-66. PubMed ID: 20554099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils.
    Barrutia O; Garbisu C; Epelde L; Sampedro MC; Goicolea MA; Becerril JM
    Sci Total Environ; 2011 Sep; 409(19):4087-93. PubMed ID: 21741073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear relationships between shoot magnesium and calcium concentrations among angiosperm species are associated with cell wall chemistry.
    White PJ; Broadley MR; El-Serehy HA; George TS; Neugebauer K
    Ann Bot; 2018 Aug; 122(2):221-226. PubMed ID: 29722830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil.
    Cui H; Fan Y; Yang J; Xu L; Zhou J; Zhu Z
    Chemosphere; 2016 Oct; 161():233-241. PubMed ID: 27434253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S; Rana V; Kumar A; Maiti SK
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation.
    Keeling SM; Stewart RB; Anderson CW; Robinson BH
    Int J Phytoremediation; 2003; 5(3):235-44. PubMed ID: 14750431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors.
    Lange B; Pourret O; Meerts P; Jitaru P; Cancès B; Grison C; Faucon MP
    Chemosphere; 2016 Mar; 146():75-84. PubMed ID: 26706934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance of alfalfa and Indian mustard to Cd and the correlation of plant Cd uptake and soil Cd form.
    Zhang C; Chen Y; Xu W; Chi S; Li T; Li Y; He Z; Yang M; Feng D
    Environ Sci Pollut Res Int; 2019 May; 26(14):13804-13811. PubMed ID: 30218333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.
    Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N
    Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.
    Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ
    Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants.
    Wilson SC; Leech CD; Butler L; Lisle L; Ashley PM; Lockwood PV
    J Hazard Mater; 2013 Oct; 261():801-7. PubMed ID: 23433572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.