BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18410111)

  • 1. Considerations regarding the use of hyperspectral imaging data in classifications of food products, exemplified by analysis of maize kernels.
    Nansen C; Kolomiets M; Gao X
    J Agric Food Chem; 2008 May; 56(9):2933-8. PubMed ID: 18410111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis.
    Williams P; Geladi P; Fox G; Manley M
    Anal Chim Acta; 2009 Oct; 653(2):121-30. PubMed ID: 19808104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) kernels.
    Manley M; Williams P; Nilsson D; Geladi P
    J Agric Food Chem; 2009 Oct; 57(19):8761-9. PubMed ID: 19728712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of oil and oleic acid concentrations in individual corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis.
    Weinstock BA; Janni J; Hagen L; Wright S
    Appl Spectrosc; 2006 Jan; 60(1):9-16. PubMed ID: 16454902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variogram analysis of hyperspectral data to characterize the impact of biotic and abiotic stress of maize plants and to estimate biofuel potential.
    Nansen C; Sidumo AJ; Capareda S
    Appl Spectrosc; 2010 Jun; 64(6):627-36. PubMed ID: 20537230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agricultural case studies of classification accuracy, spectral resolution, and model over-fitting.
    Nansen C; Geremias LD; Xue Y; Huang F; Parra JR
    Appl Spectrosc; 2013 Nov; 67(11):1332-8. PubMed ID: 24160886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of detecting aflatoxin B1 on inoculated maize kernels surface using Vis/NIR hyperspectral imaging.
    Wang W; Heitschmidt GW; Windham WR; Feldner P; Ni X; Chu X
    J Food Sci; 2015 Jan; 80(1):M116-22. PubMed ID: 25495222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Feng X; He Y
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30477266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting.
    Zhou Q; Huang W; Tian X; Yang Y; Liang D
    J Sci Food Agric; 2021 Aug; 101(11):4532-4542. PubMed ID: 33452811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Maize seed identification using hyperspectral imaging and SVDD algorithm].
    Zhu QB; Feng ZL; Huang M; Zhu X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Feb; 33(2):517-21. PubMed ID: 23697145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of maize kernels using NIR hyperspectral imaging.
    Williams PJ; Kucheryavskiy S
    Food Chem; 2016 Oct; 209():131-8. PubMed ID: 27173544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine vision detection of bonemeal in animal feed samples.
    Nansen C; Herrman T; Swanson R
    Appl Spectrosc; 2010 Jun; 64(6):637-43. PubMed ID: 20537231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of multivariate curve resolution for analysis of FT-IR microspectroscopic images of in situ plant tissue.
    Budevska BO; Sum ST; Jones TJ
    Appl Spectrosc; 2003 Feb; 57(2):124-31. PubMed ID: 14610947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robustness of analyses of imaging data.
    Nansen C
    Opt Express; 2011 Aug; 19(16):15173-80. PubMed ID: 21934879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of oat and groat kernels using NIR hyperspectral imaging.
    Serranti S; Cesare D; Marini F; Bonifazi G
    Talanta; 2013 Jan; 103():276-84. PubMed ID: 23200388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A field-based pushbroom imaging spectrometer for estimating chlorophyll content of maize].
    Zhang DY; Liu RY; Song XY; Xu XG; Huang WJ; Zhu DZ; Wang JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):771-5. PubMed ID: 21595237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and visual detection of the main chemical compositions in maize seeds based on Raman hyperspectral imaging.
    Yang G; Wang Q; Liu C; Wang X; Fan S; Huang W
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jul; 200():186-194. PubMed ID: 29680497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
    Janni J; Weinstock BA; Hagen L; Wright S
    Appl Spectrosc; 2008 Apr; 62(4):423-6. PubMed ID: 18416901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hardness methods for testing maize kernels.
    Fox G; Manley M
    J Agric Food Chem; 2009 Jul; 57(13):5647-57. PubMed ID: 19496585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission Raman measurement directly through packed corn kernels to improve sample representation and accuracy of compositional analysis.
    Shin K; Chung H; Kwak CW
    Analyst; 2012 Aug; 137(16):3690-6. PubMed ID: 22766528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.