These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 18410518)

  • 1. Region-selective alterations of glucose oxidation and amino acid synthesis in the thiamine-deficient rat brain: a re-evaluation using 1H/13C nuclear magnetic resonance spectroscopy.
    Navarro D; Zwingmann C; Butterworth RF
    J Neurochem; 2008 Jul; 106(2):603-12. PubMed ID: 18410518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain lactate synthesis in thiamine deficiency: a re-evaluation using 1H-13C nuclear magnetic resonance spectroscopy.
    Navarro D; Zwingmann C; Hazell AS; Butterworth RF
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):33-41. PubMed ID: 15573405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain energy metabolism in a sub-acute rat model of manganese neurotoxicity: an ex vivo nuclear magnetic resonance study using [1-13C]glucose.
    Zwingmann C; Leibfritz D; Hazell AS
    Neurotoxicology; 2004 Jun; 25(4):573-87. PubMed ID: 15183011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRL/lpr mice have alterations in brain metabolism as shown with [1H-13C] NMR spectroscopy.
    Alexander JJ; Zwingmann C; Quigg R
    Neurochem Int; 2005 Jul; 47(1-2):143-51. PubMed ID: 15893408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nmr spectroscopic analysis of regional brain energy metabolism in manganese neurotoxicity.
    Zwingmann C; Leibfritz D; Hazell AS
    Glia; 2007 Nov; 55(15):1610-7. PubMed ID: 17823966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo injection of [1-13C]glucose and [1,2-13C]acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat.
    Håberg A; Qu H; Haraldseth O; Unsgård G; Sonnewald U
    J Cereb Blood Flow Metab; 1998 Nov; 18(11):1223-32. PubMed ID: 9809511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective increase of brain lactate synthesis in experimental acute liver failure: results of a [H-C] nuclear magnetic resonance study.
    Zwingmann C; Chatauret N; Leibfritz D; Butterworth RF
    Hepatology; 2003 Feb; 37(2):420-8. PubMed ID: 12540793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiamine deficiency results in downregulation of the GLAST glutamate transporter in cultured astrocytes.
    Hazell AS; Pannunzio P; Rama Rao KV; Pow DV; Rambaldi A
    Glia; 2003 Aug; 43(2):175-84. PubMed ID: 12838509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homeostasis of neuroactive amino acids in cultured cerebellar and neocortical neurons is influenced by environmental cues.
    Waagepetersen H; Melø T; Schousboe A; Sonnewald U
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):97-105. PubMed ID: 15558763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABA alters the metabolic fate of [U-13C]glutamate in cultured cortical astrocytes.
    McKenna MC; Sonnewald U
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):81-7. PubMed ID: 15593283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamatergic and GABAergic energy metabolism measured in the rat brain by (13) C NMR spectroscopy at 14.1 T.
    Duarte JM; Gruetter R
    J Neurochem; 2013 Sep; 126(5):579-90. PubMed ID: 23745684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histamine-mediated neuronal death in a rat model of Wernicke's encephalopathy.
    Langlais PJ; Zhang SX; Weilersbacher G; Hough LB; Barke KE
    J Neurosci Res; 1994 Aug; 38(5):565-74. PubMed ID: 7529327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain.
    Serres S; Raffard G; Franconi JM; Merle M
    J Cereb Blood Flow Metab; 2008 Apr; 28(4):712-24. PubMed ID: 17940539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood-brain barrier abnormalities in vulnerable brain regions during thiamine deficiency.
    Calingasan NY; Baker H; Sheu KF; Gibson GE
    Exp Neurol; 1995 Jul; 134(1):64-72. PubMed ID: 7672039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered expression of tight junction proteins and matrix metalloproteinases in thiamine-deficient mouse brain.
    Beauchesne E; Desjardins P; Hazell AS; Butterworth RF
    Neurochem Int; 2009 Sep; 55(5):275-81. PubMed ID: 19576514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy and glucose pathways in thiamine deficient primary rat brain microvascular endothelial cells.
    Ham D; Karska-Wysocki B
    Gen Physiol Biophys; 2005 Dec; 24(4):467-74. PubMed ID: 16474190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis.
    Zwingmann C; Leibfritz D; Hazell AS
    J Cereb Blood Flow Metab; 2003 Jun; 23(6):756-71. PubMed ID: 12796724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired oxidation of branched-chain amino acids in the medial thalamus of thiamine-deficient rats.
    Navarro D; Zwingmann C; Butterworth RF
    Metab Brain Dis; 2008 Dec; 23(4):445-55. PubMed ID: 18773288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotection by rasagiline in thiamine deficient rats.
    Eliash S; Dror V; Cohen S; Rehavi M
    Brain Res; 2009 Feb; 1256():138-48. PubMed ID: 19103184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurodegeneration in thiamine deficient rats-A longitudinal MRI study.
    Dror V; Eliash S; Rehavi M; Assaf Y; Biton IE; Fattal-Valevski A
    Brain Res; 2010 Jan; 1308():176-84. PubMed ID: 19857469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.