These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18411840)

  • 1. Modelling NiFe hydrogenases: nickel-based electrocatalysts for hydrogen production.
    Canaguier S; Artero V; Fontecave M
    Dalton Trans; 2008 Jan; (3):315-25. PubMed ID: 18411840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase.
    Brazzolotto D; Gennari M; Queyriaux N; Simmons TR; Pécaut J; Demeshko S; Meyer F; Orio M; Artero V; Duboc C
    Nat Chem; 2016 Nov; 8(11):1054-1060. PubMed ID: 27768098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates.
    Armstrong FA; Albracht SP
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):937-54; discussion 1035-40. PubMed ID: 15991402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A trinuclear [NiFe] cluster exhibiting structural and functional key features of [NiFe] hydrogenases.
    Sellmann D; Lauderbach F; Geipel F; Heinemann FW; Moll M
    Angew Chem Int Ed Engl; 2004 Jun; 43(24):3141-4. PubMed ID: 15199561
    [No Abstract]   [Full Text] [Related]  

  • 5. Dithiolato-bridged dinuclear iron-nickel complexes [Fe(CO)2(CN)2(mu-SCH2CH2CH2S)Ni(S2CNR2)]- modeling the active site of [NiFe] hydrogenase.
    Li Z; Ohki Y; Tatsumi K
    J Am Chem Soc; 2005 Jun; 127(25):8950-1. PubMed ID: 15969562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diiron and trinuclear NiFe
    Zhao PH; Li JR; Gu XL; Jing XB; Liu XF
    J Inorg Biochem; 2020 Sep; 210():111126. PubMed ID: 32521290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical aspects of [NiFe]hydrogenase ligand composition.
    Ichikawa K; Matsumoto T; Ogo S
    Dalton Trans; 2009 Jun; (22):4304-9. PubMed ID: 19662307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional [NiFe]hydrogenase mimic that catalyzes electron and hydride transfer from H2.
    Ogo S; Ichikawa K; Kishima T; Matsumoto T; Nakai H; Kusaka K; Ohhara T
    Science; 2013 Feb; 339(6120):682-4. PubMed ID: 23393260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ni(xbsms)Ru(CO)2Cl2]: a bioinspired nickel-ruthenium functional model of [NiFe] hydrogenase.
    Oudart Y; Artero V; Pécaut J; Fontecave M
    Inorg Chem; 2006 May; 45(11):4334-6. PubMed ID: 16711679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dinuclear Ni(mu-H)Ru complex derived from H2.
    Ogo S; Kabe R; Uehara K; Kure B; Nishimura T; Menon SC; Harada R; Fukuzumi S; Higuchi Y; Ohhara T; Tamada T; Kuroki R
    Science; 2007 Apr; 316(5824):585-7. PubMed ID: 17463285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct comparison of the performance of a bio-inspired synthetic nickel catalyst and a [NiFe]-hydrogenase, both covalently attached to electrodes.
    Rodriguez-Maciá P; Dutta A; Lubitz W; Shaw WJ; Rüdiger O
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12303-7. PubMed ID: 26140506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Molecular Proceedings of Biological Hydrogen Turnover.
    Haumann M; Stripp ST
    Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From enzyme maturation to synthetic chemistry: the case of hydrogenases.
    Artero V; Berggren G; Atta M; Caserta G; Roy S; Pecqueur L; Fontecave M
    Acc Chem Res; 2015 Aug; 48(8):2380-7. PubMed ID: 26165393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen-induced structural changes at the nickel site of the regulatory [NiFe] hydrogenase from Ralstonia eutropha detected by X-ray absorption spectroscopy.
    Haumann M; Porthun A; Buhrke T; Liebisch P; Meyer-Klaucke W; Friedrich B; Dau H
    Biochemistry; 2003 Sep; 42(37):11004-15. PubMed ID: 12974636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural and functional mimic of the active site of NiFe hydrogenases.
    Canaguier S; Field M; Oudart Y; Pécaut J; Fontecave M; Artero V
    Chem Commun (Camb); 2010 Aug; 46(32):5876-8. PubMed ID: 20625582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases.
    Hexter SV; Grey F; Happe T; Climent V; Armstrong FA
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11516-21. PubMed ID: 22802675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclopentadienyl ruthenium-nickel catalysts for biomimetic hydrogen evolution: electrocatalytic properties and mechanistic DFT studies.
    Canaguier S; Vaccaro L; Artero V; Ostermann R; Pécaut J; Field MJ; Fontecave M
    Chemistry; 2009 Sep; 15(37):9350-64. PubMed ID: 19670195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling nickel hydrogenases: synthesis and structure of a distorted octahedral complex with an unprecedented [NiS(4)H(2)] core.
    Alvarez HM; Krawiec M; Donovan-Merkert BT; Fouzi M; Rabinovich D
    Inorg Chem; 2001 Nov; 40(23):5736-7. PubMed ID: 11681879
    [No Abstract]   [Full Text] [Related]  

  • 19. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases.
    Slater JW; Marguet SC; Monaco HA; Shafaat HS
    J Am Chem Soc; 2018 Aug; 140(32):10250-10262. PubMed ID: 30016865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional hydrogenase model: reversible interconversion of H2 and H2O by a hydroxo/sulfido-bridged dinuclear ruthenium-germanium complex.
    Matsumoto T; Nakaya Y; Itakura N; Tatsumi K
    J Am Chem Soc; 2008 Feb; 130(8):2458-9. PubMed ID: 18237177
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.