These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18411840)

  • 21. Dithiolato-bridged nickel-iron complexes as models for the active site of [NiFe]-hydrogenases.
    Song LC; Yang XY; Cao M; Gao XY; Liu BB; Zhu L; Jiang F
    Chem Commun (Camb); 2017 Mar; 53(27):3818-3821. PubMed ID: 28287233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [NiFeSe]-hydrogenase chemistry.
    Wombwell C; Caputo CA; Reisner E
    Acc Chem Res; 2015 Nov; 48(11):2858-65. PubMed ID: 26488197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrocatalytic proton reduction by a model for [NiFeSe] hydrogenases.
    Gezer G; Durán Jiménez D; Siegler MA; Bouwman E
    Dalton Trans; 2017 Jun; 46(23):7506-7514. PubMed ID: 28561854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemistry and the hydrogenases.
    Evans DJ; Pickett CJ
    Chem Soc Rev; 2003 Sep; 32(5):268-75. PubMed ID: 14518180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water.
    Gloaguen F
    Inorg Chem; 2016 Jan; 55(2):390-8. PubMed ID: 26641526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases.
    Kure B; Matsumoto T; Ichikawa K; Fukuzumi S; Higuchi Y; Yagi T; Ogo S
    Dalton Trans; 2008 Sep; (35):4747-55. PubMed ID: 18728883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]-Hydrogenase Model: Low pH Enables Catalysis through an Enzyme-Relevant Mechanism.
    Ahmed ME; Chattopadhyay S; Wang L; Brazzolotto D; Pramanik D; Aldakov D; Fize J; Morozan A; Gennari M; Duboc C; Dey A; Artero V
    Angew Chem Int Ed Engl; 2018 Dec; 57(49):16001-16004. PubMed ID: 30307683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect.
    Liu P; Rodriguez JA
    J Am Chem Soc; 2005 Oct; 127(42):14871-8. PubMed ID: 16231942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathways of H2 toward the active site of [NiFe]-hydrogenase.
    Teixeira VH; Baptista AM; Soares CM
    Biophys J; 2006 Sep; 91(6):2035-45. PubMed ID: 16731562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage.
    Thauer RK; Kaster AK; Goenrich M; Schick M; Hiromoto T; Shima S
    Annu Rev Biochem; 2010; 79():507-36. PubMed ID: 20235826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maturation of [NiFe]-hydrogenases in Escherichia coli.
    Forzi L; Sawers RG
    Biometals; 2007 Jun; 20(3-4):565-78. PubMed ID: 17216401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake.
    Caserta G; Roy S; Atta M; Artero V; Fontecave M
    Curr Opin Chem Biol; 2015 Apr; 25():36-47. PubMed ID: 25553541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogenases and H(+)-reduction in primary energy conservation.
    Vignais PM
    Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel reactions of homodinuclear Ni2 complexes [Ni(RNPyS4)]2 with Fe3(CO)12 to give heterotrinuclear NiFe2 and mononuclear Fe complexes relevant to [NiFe]- and [Fe]-hydrogenases.
    Song LC; Cao M; Wang YX
    Dalton Trans; 2015 Apr; 44(15):6797-808. PubMed ID: 25747808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nickel-ruthenium-based complexes as biomimetic models of [NiFe] and [NiFeSe] hydrogenases for dihydrogen evolution.
    Gezer G; Verbeek S; Siegler MA; Bouwman E
    Dalton Trans; 2017 Oct; 46(39):13590-13596. PubMed ID: 28952642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of the H-cluster framework of iron-only hydrogenase.
    Tard C; Liu X; Ibrahim SK; Bruschi M; De Gioia L; Davies SC; Yang X; Wang LS; Sawers G; Pickett CJ
    Nature; 2005 Feb; 433(7026):610-3. PubMed ID: 15703741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media.
    Baffert C; Artero V; Fontecave M
    Inorg Chem; 2007 Mar; 46(5):1817-24. PubMed ID: 17269760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide.
    Yang X
    Chem Commun (Camb); 2015 Aug; 51(66):13098-101. PubMed ID: 26186244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of Metallopolymers via Atom Transfer Radical Polymerization from a [2Fe-2S] Metalloinitiator: Molecular Weight Effects on Electrocatalytic Hydrogen Production.
    Karayilan M; McCleary-Petersen KC; Hamilton MO; Fu L; Matyjaszewski K; Glass RS; Lichtenberger DL; Pyun J
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900424. PubMed ID: 31631429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DFT Investigation of H2 activation by [M(NHPnPr3)('S3')] (M = Ni, Pd). Insight into key factors relevant to the design of hydrogenase functional models.
    Zampella G; Bruschi M; Fantucci P; De Gioia L
    J Am Chem Soc; 2005 Sep; 127(38):13180-9. PubMed ID: 16173745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.