BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 18411945)

  • 1. Diagnosing avian influenza infection in vaccinated populations by systems for differentiating infected from vaccinated animals (DIVA).
    Capua I; Cattoli G
    Dev Biol (Basel); 2007; 130():137-43. PubMed ID: 18411945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control and prevention of avian influenza in an evolving scenario.
    Capua I; Marangon S
    Vaccine; 2007 Jul; 25(30):5645-52. PubMed ID: 17169466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of avian influenza DIVA test strategies.
    Suarez DL
    Biologicals; 2005 Dec; 33(4):221-6. PubMed ID: 16257543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current developments in avian influenza vaccines, including safety of vaccinated birds as food.
    Swayne DE; Suarez DL
    Dev Biol (Basel); 2007; 130():123-33. PubMed ID: 18411943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative efficacy of North American and antigenically matched reverse genetics derived H5N9 DIVA marker vaccines against highly pathogenic Asian H5N1 avian influenza viruses in chickens.
    Jadhao SJ; Lee CW; Sylte M; Suarez DL
    Vaccine; 2009 Oct; 27(44):6247-60. PubMed ID: 19686695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of vaccination to combat multiple introductions of Notifiable Avian Influenza viruses of the H5 and H7 subtypes between 2000 and 2006 in Italy.
    Capua I; Marangon S
    Vaccine; 2007 Jun; 25(27):4987-95. PubMed ID: 17418460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vaccination policy applied for the control of avian influenza in Italy.
    Capua I; Marangon S
    Dev Biol (Basel); 2003; 114():213-9. PubMed ID: 14677691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of reassortant influenza vaccines by reverse genetics that allows utilization of a DIVA (Differentiating Infected from Vaccinated Animals) strategy for the control of avian influenza.
    Lee CW; Senne DA; Suarez DL
    Vaccine; 2004 Aug; 22(23-24):3175-81. PubMed ID: 15297071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planning and executing a vaccination campaign against avian influenza.
    Marangon S; Cristalli A; Busani L
    Dev Biol (Basel); 2007; 130():99-108. PubMed ID: 18411940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field experiences in the control of avian influenza outbreaks in densely populated poultry areas.
    Marangon S; Capua I; Pozza G; Santucci U
    Dev Biol (Basel); 2004; 119():155-64. PubMed ID: 15742627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Avian influenza vaccination in North America: strategies and difficulties.
    Suarez DL; Lee CW; Swayne DE
    Dev Biol (Basel); 2006; 124():117-24. PubMed ID: 16447502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a positive marker of avian influenza vaccination in ducks for use in H5N1 surveillance.
    James CM; Foong YY; Mansfield JP; Vind AR; Fenwick SG; Ellis TM
    Vaccine; 2008 Oct; 26(42):5345-51. PubMed ID: 18723069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of tetanus toxoid as a differentiating infected from vaccinated animals (DIVA) strategy for sero-surveillance of avian influenza virus vaccination in poultry.
    James CM; Foong YY; Mansfield JP; Fenwick SG; Ellis TM
    Vaccine; 2007 Aug; 25(31):5892-901. PubMed ID: 17583393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avian influenza vaccines: a practical review in relation to their application in the field with a focus on the Asian experience.
    Peyre M; Fusheng G; Desvaux S; Roger F
    Epidemiol Infect; 2009 Jan; 137(1):1-21. PubMed ID: 18700992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of vaccination as an option for the control of avian influenza.
    Capua I; Marangon S
    Avian Pathol; 2003 Aug; 32(4):335-43. PubMed ID: 17585456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and evaluation of an H9N1 influenza vaccine derived by reverse genetics that allows utilization of a DIVA strategy for control of H9N2 avian influenza.
    Wu R; Chen Q; Zheng L; Chen J; Sui Z; Guan Y; Chen Z
    Arch Virol; 2009; 154(8):1203-10. PubMed ID: 19543688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DIVA--a vaccination strategy enabling the detection of field exposure to avian influenza.
    Capua I; Cattoli G; Marangon S
    Dev Biol (Basel); 2004; 119():229-33. PubMed ID: 15742633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of M2e ELISAs for longitudinal surveillance of commercial poultry in Indonesia vaccinated against highly pathogenic avian influenza.
    Wibowo MH; Tarigan S; Sumarningsih ; Artanto S; Indriani R; Anggoro D; Putra CP; Idris S; Untari T; Asmara W; Tabbu CR; Ignjatovic J
    J Virol Methods; 2017 Nov; 249():181-188. PubMed ID: 28843786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Economic issues in vaccination against highly pathogenic avian influenza in developing countries.
    McLeod A; Rushton J; Riviere-Cinnamond A; Brandenburg B; Hinrichs J; Loth L
    Dev Biol (Basel); 2007; 130():63-72. PubMed ID: 18411936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DIVA vaccination strategies for avian influenza virus.
    Suarez DL
    Avian Dis; 2012 Dec; 56(4 Suppl):836-44. PubMed ID: 23402101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.