These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18412345)

  • 1. Hydrogen bonding contributes to the selectivity of nucleotide incorporation opposite an oxidized abasic lesion.
    Huang H; Greenberg MM
    J Am Chem Soc; 2008 May; 130(19):6080-1. PubMed ID: 18412345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro effects of a C4'-oxidized abasic site on DNA polymerases.
    Greenberg MM; Weledji YN; Kroeger KM; Kim J; Goodman MF
    Biochemistry; 2004 Mar; 43(9):2656-63. PubMed ID: 14992603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA polymerase V kinetics support the instructive nature of an oxidized abasic lesion in Escherichia coli.
    Bajacan JE; Greenberg MM
    Biochemistry; 2013 Sep; 52(37):6301-3. PubMed ID: 24015801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication of an oxidized abasic site in Escherichia coli by a dNTP-stabilized misalignment mechanism that reads upstream and downstream nucleotides.
    Kroeger KM; Kim J; Goodman MF; Greenberg MM
    Biochemistry; 2006 Apr; 45(15):5048-56. PubMed ID: 16605273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenic effects of 2-deoxyribonolactone in Escherichia coli. An abasic lesion that disobeys the A-rule.
    Kroeger KM; Jiang YL; Kow YW; Goodman MF; Greenberg MM
    Biochemistry; 2004 Jun; 43(21):6723-33. PubMed ID: 15157106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and analysis of oligonucleotides containing abasic site analogues.
    Huang H; Greenberg MM
    J Org Chem; 2008 Apr; 73(7):2695-703. PubMed ID: 18324835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA synthesis across an abasic lesion by human DNA polymerase iota.
    Nair DT; Johnson RE; Prakash L; Prakash S; Aggarwal AK
    Structure; 2009 Apr; 17(4):530-7. PubMed ID: 19368886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions.
    Cunniffe S; O'Neill P; Greenberg MM; Lomax ME
    Mutat Res; 2014 Apr; 762():32-9. PubMed ID: 24631220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of non-natural nucleotides for selective incorporation opposite damaged DNA.
    Vineyard D; Zhang X; Donnelly A; Lee I; Berdis AJ
    Org Biomol Chem; 2007 Nov; 5(22):3623-30. PubMed ID: 17971991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward understanding the mutagenicity of an environmental carcinogen: structural insights into nucleotide incorporation preferences.
    Perlow RA; Broyde S
    J Mol Biol; 2002 Sep; 322(2):291-309. PubMed ID: 12217692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of oxidized abasic sites by exonuclease III, endonuclease IV, and endonuclease III.
    Greenberg MM; Weledji YN; Kim J; Bales BC
    Biochemistry; 2004 Jun; 43(25):8178-83. PubMed ID: 15209514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for Watson-Crick and not Hoogsteen or wobble base pairing in the selection of nucleotides for insertion opposite pyrimidines and a thymine dimer by yeast DNA pol eta.
    Hwang H; Taylor JS
    Biochemistry; 2005 Mar; 44(12):4850-60. PubMed ID: 15779911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A specific partner for abasic damage in DNA.
    Matray TJ; Kool ET
    Nature; 1999 Jun; 399(6737):704-8. PubMed ID: 10385125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid templating mechanisms in selection of nucleotides opposite abasic sites by a family a DNA polymerase.
    Obeid S; Welte W; Diederichs K; Marx A
    J Biol Chem; 2012 Apr; 287(17):14099-108. PubMed ID: 22318723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending the understanding of mutagenicity: structural insights into primer-extension past a benzo[a]pyrene diol epoxide-DNA adduct.
    Perlow RA; Broyde S
    J Mol Biol; 2003 Apr; 327(4):797-818. PubMed ID: 12654264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abasic and oxidized abasic site reactivity in DNA: enzyme inhibition, cross-linking, and nucleosome catalyzed reactions.
    Greenberg MM
    Acc Chem Res; 2014 Feb; 47(2):646-55. PubMed ID: 24369694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The A-Rule and Deletion Formation During Abasic and Oxidized Abasic Site Bypass by DNA Polymerase θ.
    Laverty DJ; Averill AM; Doublié S; Greenberg MM
    ACS Chem Biol; 2017 Jun; 12(6):1584-1592. PubMed ID: 28459528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement of Watson-Crick hydrogen bonding for DNA synthesis by yeast DNA polymerase eta.
    Washington MT; Helquist SA; Kool ET; Prakash L; Prakash S
    Mol Cell Biol; 2003 Jul; 23(14):5107-12. PubMed ID: 12832493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is a thymine dimer replicated via a transient abasic site intermediate? A comparative study using non-natural nucleotides.
    Devadoss B; Lee I; Berdis AJ
    Biochemistry; 2007 Apr; 46(15):4486-98. PubMed ID: 17378586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translesional synthesis on DNA templates containing the 2'-deoxyribonolactone lesion.
    Berthet N; Roupioz Y; Constant JF; Kotera M; Lhomme J
    Nucleic Acids Res; 2001 Jul; 29(13):2725-32. PubMed ID: 11433017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.