These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 18412415)
1. Standard partial molar volumes of some aqueous alkanolamines and alkoxyamines at temperatures up to 325 degrees C: functional group additivity in polar organic solutes under hydrothermal conditions. Bulemela E; Tremaine PR J Phys Chem B; 2008 May; 112(18):5626-45. PubMed ID: 18412415 [TBL] [Abstract][Full Text] [Related]
2. Standard partial molar volumes of aqueous glycolic acid and tartaric acid from 25 to 350 degrees C: evidence of a negative Krichevskii parameter for a neutral organic solute. Bulemela E; Tremaine PR J Phys Chem B; 2005 Nov; 109(43):20539-45. PubMed ID: 16853658 [TBL] [Abstract][Full Text] [Related]
3. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C. Clegg SL; Wexler AS J Phys Chem A; 2011 Apr; 115(15):3393-460. PubMed ID: 21438504 [TBL] [Abstract][Full Text] [Related]
4. Apparent and standard partial molar volumes of NaCl, NaOH, and HCl in water and heavy water at T = 523 K and 573 K at p = 14 MPa. Trevani LN; Balodis EC; Tremaine PR J Phys Chem B; 2007 Mar; 111(8):2015-24. PubMed ID: 17274641 [TBL] [Abstract][Full Text] [Related]
5. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 2. The systems H(+)-HSO4(-)-SO4(2-)-H2O from 0 to 3 mol kg(-1) as a function of temperature and H(+)-NH4(+)-HSO4(-)-SO4)2-)-H2O from 0 to 6 mol kg(-1) at 25 °C using a Pitzer ion interaction model, and NH4HSO4-H2O and (NH4)3H(SO4)2-H2O over the entire concentration range. Clegg SL; Wexler AS J Phys Chem A; 2011 Apr; 115(15):3461-74. PubMed ID: 21438500 [TBL] [Abstract][Full Text] [Related]
6. Partial molar volumes of polypeptides and their constituent groups in aqueous solution over a broad temperature range. Makhatadze GI; Medvedkin VN; Privalov PL Biopolymers; 1990; 30(11-12):1001-10. PubMed ID: 2081262 [TBL] [Abstract][Full Text] [Related]
7. Standard thermodynamic properties of H3PO4(aq) over a wide range of temperatures and pressures. Ballerat-Busserolles K; Sedlbauer J; Majer V J Phys Chem B; 2007 Jan; 111(1):181-90. PubMed ID: 17201442 [TBL] [Abstract][Full Text] [Related]
8. On the determination of partial molar polarizations and dipole moments of solutes from multicomponent solutions alone: experimental and model development using deutero-labeled organic compounds. Tjahjono M; Garland M J Phys Chem B; 2007 Nov; 111(45):13064-74. PubMed ID: 17949075 [TBL] [Abstract][Full Text] [Related]
9. Hydrophilicity of Polar and Apolar Domains of Amphiphiles. Yu H; Narusawa H; Itoh K; Oshi A; Yoshino N; Ohbu K; Shirakawa T; Fukada K; Fujii M; Kato T; Seimiya T J Colloid Interface Sci; 2000 Sep; 229(2):375-390. PubMed ID: 10985816 [TBL] [Abstract][Full Text] [Related]
10. Isentropic and isothermal compressibilities of the backbone glycyl group of proteins in aqueous solution. Hedwig GR Biophys Chem; 2006 Oct; 124(1):35-42. PubMed ID: 16782262 [TBL] [Abstract][Full Text] [Related]
11. Volumetric properties of the glycyl group of proteins in aqueous solution at high pressures. Hedwig GR; Høgseth E; Høiland H Phys Chem Chem Phys; 2008 Feb; 10(6):884-97. PubMed ID: 18231691 [TBL] [Abstract][Full Text] [Related]
12. Volumes of aqueous alcohols, ethers, and ketones to T = 523 K and p = 28 MPa. Schulte MD; Shock EL; Obsil M; Majer V J Chem Thermodyn; 1999 Sep; 31(9):1195-229. PubMed ID: 11543305 [TBL] [Abstract][Full Text] [Related]
13. Thermochemistry of aqueous hydroxyl radical from advances in photoacoustic calorimetry and ab initio continuum solvation theory. Autrey T; Brown AK; Camaioni DM; Dupuis M; Foster NS; Getty A J Am Chem Soc; 2004 Mar; 126(12):3680-1. PubMed ID: 15038698 [TBL] [Abstract][Full Text] [Related]
14. The direct determination of partial molar volumes and reaction volumes in ultra-dilute non-reactive and reactive multi-component systems using a combined spectroscopic and modified response surface model approach. Tjahjono M; Allian AD; Garland M Dalton Trans; 2006 Mar; (12):1505-16. PubMed ID: 16538269 [TBL] [Abstract][Full Text] [Related]
16. The electrostatic origin of Abraham's solute polarity parameter. Arey JS; Green WH; Gschwend PM J Phys Chem B; 2005 Apr; 109(15):7564-73. PubMed ID: 16851869 [TBL] [Abstract][Full Text] [Related]
17. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
18. Equation of state of nitrogen (N2) at high pressures and high temperatures: molecular dynamics simulation. Krukowski S; Strak P J Chem Phys; 2006 Apr; 124(13):134501. PubMed ID: 16613455 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the heat- and pressure-induced helix-coil transition of two DNA copolymers. Rayan G; Macgregor RB J Phys Chem B; 2005 Aug; 109(32):15558-65. PubMed ID: 16852973 [TBL] [Abstract][Full Text] [Related]
20. Effect of magnesium chloride (2:1 electrolyte) on the aqueous solution behavior of some saccharides over the temperature range of 288.15-318.15 K: a volumetric approach. Banipal PK; Hundal AK; Banipal TS Carbohydr Res; 2010 Oct; 345(15):2262-71. PubMed ID: 20832058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]