BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18412489)

  • 1. Study of micromotion in modular acetabular components during gait and subluxation: a finite element investigation.
    Amirouche F; Romero F; Gonzalez M; Aram L
    J Biomech Eng; 2008 Apr; 130(2):021002. PubMed ID: 18412489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of under-reaming on the cup/bone interface of a press fit hip replacement.
    Zivkovic I; Gonzalez M; Amirouche F
    J Biomech Eng; 2010 Apr; 132(4):041008. PubMed ID: 20387971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of polyethylene creep behavior on wear in total hip arthroplasty.
    Penmetsa JR; Laz PJ; Petrella AJ; Rullkoetter PJ
    J Orthop Res; 2006 Mar; 24(3):422-7. PubMed ID: 16479600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion at the modular acetabular shell and liner interface. A comparative study.
    Fehring TK; Smith SE; Braun ER; Mobley C; Wang PL; Griffin WL
    Clin Orthop Relat Res; 1999 Oct; (367):306-14. PubMed ID: 10546629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement.
    Kluess D; Martin H; Mittelmeier W; Schmitz KP; Bader R
    Med Eng Phys; 2007 May; 29(4):465-71. PubMed ID: 16901743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element simulation of early creep and wear in total hip arthroplasty.
    Bevill SL; Bevill GR; Penmetsa JR; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Dec; 38(12):2365-74. PubMed ID: 16214484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive finite element modeling of long-term polyethylene wear in total hip arthroplasty.
    Maxian TA; Brown TD; Pedersen DR; Callaghan JJ
    J Orthop Res; 1996 Jul; 14(4):668-75. PubMed ID: 8764879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethylene wear debris in modular acetabular prostheses.
    Chen PC; Mead EH; Pinto JG; Colwell CW
    Clin Orthop Relat Res; 1995 Aug; (317):44-56. PubMed ID: 7671495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Problematic sites of third body embedment in polyethylene for total hip wear acceleration.
    Lundberg HJ; Stewart KJ; Pedersen DR; Callaghan JJ; Brown TD
    J Biomech; 2006; 39(7):1208-16. PubMed ID: 15894322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design optimization of a total hip prosthesis for wear reduction.
    Matsoukas G; Kim IY
    J Biomech Eng; 2009 May; 131(5):051003. PubMed ID: 19388773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Frank Stinchfield Award. 3-Dimensional sliding/contact computational simulation of total hip wear.
    Maxian TA; Brown TD; Pedersen DR; Callaghan JJ
    Clin Orthop Relat Res; 1996 Dec; (333):41-50. PubMed ID: 8981881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure analysis of a ceramic bearing acetabular component.
    Poggie RA; Turgeon TR; Coutts RD
    J Bone Joint Surg Am; 2007 Feb; 89(2):367-75. PubMed ID: 17272452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of muscle forces and gait cycle discretization when assessing acetabular cup primary stability: A finite element study.
    Fallahnezhad K; O'Rourke D; Bahl JS; Thewlis D; Taylor M
    Comput Methods Programs Biomed; 2023 Mar; 230():107351. PubMed ID: 36709556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of motion patterns on edge-loading of metal-on-metal hip resurfacing.
    Mellon SJ; Kwon YM; Glyn-Jones S; Murray DW; Gill HS
    Med Eng Phys; 2011 Dec; 33(10):1212-20. PubMed ID: 21705257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No effect of femoral offset on bone implant micromotion in an experimental model.
    Amirouche F; Solitro G; Walia A
    Orthop Traumatol Surg Res; 2016 May; 102(3):379-85. PubMed ID: 26970866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement loci of selected points on the femoral head for individual total hip arthroplasty patients using three-dimensional computer simulation.
    Bennett DB; Orr JF; Baker R
    J Arthroplasty; 2000 Oct; 15(7):909-15. PubMed ID: 11061452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized design for a novel acetabular component with three wings. A study of finite element analysis.
    Ma W; Zhang X; Wang J; Zhang Q; Chen W; Zhang Y
    J Surg Res; 2013 Jan; 179(1):78-86. PubMed ID: 22995660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design parameters dependences on contact stress distribution in gait and jogging phases after total hip arthroplasty.
    Rixrath E; Wendling-Mansuy S; Flecher X; Chabrand P; Argenson JN
    J Biomech; 2008; 41(5):1137-42. PubMed ID: 18234204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of head diameter and wall thickness on deformations of metallic acetabular press-fit cups and UHMWPE liners: a finite element analysis.
    Goebel P; Kluess D; Wieding J; Souffrant R; Heyer H; Sander M; Bader R
    J Orthop Sci; 2013 Mar; 18(2):264-70. PubMed ID: 23377753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical biomechanics of wear in total hip arthroplasty.
    Callaghan JJ; Pedersen DR; Johnston RC; Brown TD
    Iowa Orthop J; 2003; 23():1-12. PubMed ID: 14575243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.