These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 184136)

  • 1. Anisotropic rotational diffusion and intramolecular motion in cyclic amino acids and peptides. An interpretation of 13C spin-lattice relaxation data.
    Somorjai RL; Deslauriers R
    J Am Chem Soc; 1976 Oct; 98(21):6460-7. PubMed ID: 184136
    [No Abstract]   [Full Text] [Related]  

  • 2. Assessment of protein reorientational diffusion in solution by 13C off-resonance rotating frame spin-lattice relaxation: effect of anisotropic tumbling.
    Morgan CF; Schleich T; Caines GH; Michael D
    Biopolymers; 1990 Feb; 29(3):469-80. PubMed ID: 2331510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explanation of spin-lattice relaxation rates of spin labels obtained with multifrequency saturation recovery EPR.
    Mailer C; Nielsen RD; Robinson BH
    J Phys Chem A; 2005 May; 109(18):4049-61. PubMed ID: 16833727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C NMR relaxation studies of complexes between cyclo(L-Pro-Gly)3 and amino acids. Conformational aspects of stepwise binding.
    Bartman B; Deber CM; Blout ER
    J Am Chem Soc; 1977 Feb; 99(4):1028-33. PubMed ID: 833392
    [No Abstract]   [Full Text] [Related]  

  • 5. Carbon-13 spin-lattice relaxation studies of intramolecular motion in lysine and a series of oligolysines.
    Saito H; Smith IC
    Arch Biochem Biophys; 1974 Aug; 163(2):699-704. PubMed ID: 4369827
    [No Abstract]   [Full Text] [Related]  

  • 6. Nuclear magnetic resonance studies of amino acids and proteins. Rotational correlation times of proteins by deuterium nuclear magnetic resonance spectroscopy.
    Schramm S; Oldfield E
    Biochemistry; 1983 Jun; 22(12):2908-13. PubMed ID: 6871171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics in liquids: spin-lattice relaxation of nitroxide spin labels.
    Robinson BH; Haas DA; Mailer C
    Science; 1994 Jan; 263(5146):490-3. PubMed ID: 8290958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protonated amino acid precursor studies on rhodotorulic acid biosynthesis in deuterium oxide media.
    Akers HA; LlinĂ¡s M; Neilands JB
    Biochemistry; 1972 Jun; 11(12):2283-91. PubMed ID: 5063738
    [No Abstract]   [Full Text] [Related]  

  • 9. 13C nuclear magnetic resonance relaxation-derived psi, phi bond rotational energy barriers and rotational restrictions for glycine 13C alpha-methylenes in a GXX-repeat hexadecapeptide.
    Daragan VA; Kloczewiak MA; Mayo KH
    Biochemistry; 1993 Oct; 32(40):10580-90. PubMed ID: 8399202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-electron double resonance and saturation-recovery studies of nitroxide electron and nuclear spin-lattice relaxation times and Heisenberg exchange rates: lateral diffusion in dimyristoyl phosphatidylcholine.
    Popp CA; Hyde JS
    Proc Natl Acad Sci U S A; 1982 Apr; 79(8):2559-63. PubMed ID: 6283533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models for slow anisotropic rotational diffusion in saturation transfer electron paramagnetic resonance at 9 and 35 GHz.
    Johnson ME; Lee L; Fung LW
    Biochemistry; 1982 Aug; 21(18):4459-67. PubMed ID: 6289883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular microdynamical and conformational parameters of peptides from 1H and 13C NMR spin-lattice relaxation. Tetragastrin.
    Bleich HE; Cutnell JD; Glasel JA
    Biochemistry; 1976 Jun; 15(11):2455-66. PubMed ID: 1276155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational flexibility of angiotensin II. A carbon-13 spin-lattice relaxation study.
    Deslauriers R; Paiva AC; Schaumburg K; Smith IC
    Biochemistry; 1975 Mar; 14(5):878-86. PubMed ID: 164885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrrolidine ring conformations in prolyl peptides from 13C spin-lattice relaxation times.
    Shekar SC; Sankaram MB; Easwaran KR
    Int J Pept Protein Res; 1984 Feb; 23(2):166-73. PubMed ID: 6698720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes.
    Tian J; Yin Y
    Magn Reson Chem; 2004 Jul; 42(7):641-7. PubMed ID: 15181635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships among primary structures, conformations and biological activities of polypeptide antibiotics.
    Toniolo C
    Farmaco Sci; 1971 Aug; 26(8):741-70. PubMed ID: 4106000
    [No Abstract]   [Full Text] [Related]  

  • 17. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects.
    Terblanche CJ; Reynhardt EC; van Wyk JA
    Solid State Nucl Magn Reson; 2001; 20(1-2):1-22. PubMed ID: 11529416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational flexibility of luteinizing hormone-releasing hormone in aqueous solution. A carbon-13 spin-lattice relaxation time study.
    Deslauriers R; Levy GC; McGregor WH; Sarantakis K; Smith IC
    Biochemistry; 1975 Sep; 14(19):4335-43. PubMed ID: 170960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular motion in peptide determined by 13C NMR: a spin-lattice relaxation time-study on MSH-release-inhibiting factor.
    Deslauriers R; Walter R; Smith IC
    FEBS Lett; 1973 Nov; 37(1):27-32. PubMed ID: 4585031
    [No Abstract]   [Full Text] [Related]  

  • 20. Conformations of cyclic peptides. VI. Factors influencing mono-, 1,4-di-, and 1,2,4-trisubstituted cyclic hexapeptide backbones.
    Kopple KD; Go A; Logan RH; Savrda J
    J Am Chem Soc; 1972 Feb; 94(3):973-81. PubMed ID: 5061144
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.