BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 18413610)

  • 1. Global regulatory logic for specification of an embryonic cell lineage.
    Oliveri P; Tu Q; Davidson EH
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5955-62. PubMed ID: 18413610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus.
    Damle S; Davidson EH
    Dev Biol; 2011 Sep; 357(2):505-17. PubMed ID: 21723273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution.
    Gao F; Davidson EH
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):6091-6. PubMed ID: 18413604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A gene regulatory network controlling the embryonic specification of endoderm.
    Peter IS; Davidson EH
    Nature; 2011 May; 474(7353):635-9. PubMed ID: 21623371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling.
    Shashikant T; Khor JM; Ettensohn CA
    BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo.
    Amore G; Davidson EH
    Dev Biol; 2006 May; 293(2):555-64. PubMed ID: 16574094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids.
    Erkenbrack EM; Davidson EH; Peter IS
    Development; 2018 Dec; 145(24):. PubMed ID: 30470703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins.
    Thompson JR; Erkenbrack EM; Hinman VF; McCauley BS; Petsios E; Bottjer DJ
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5870-5877. PubMed ID: 28584090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene regulatory networks for ectoderm specification in sea urchin embryos.
    Su YH
    Biochim Biophys Acta; 2009 Apr; 1789(4):261-7. PubMed ID: 19429544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres.
    Revilla-i-Domingo R; Oliveri P; Davidson EH
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12383-8. PubMed ID: 17636127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus.
    McCarty CM; Coffman JA
    Biochem Biophys Res Commun; 2013 Oct; 440(3):413-8. PubMed ID: 24090975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development.
    Sharma T; Ettensohn CA
    Development; 2011 Jun; 138(12):2581-90. PubMed ID: 21610034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis.
    Ransick A; Davidson EH
    Dev Biol; 2012 Apr; 364(2):259-67. PubMed ID: 22509525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cis-regulatory system of the tbrain gene: Alternative use of multiple modules to promote skeletogenic expression in the sea urchin embryo.
    Wahl ME; Hahn J; Gora K; Davidson EH; Oliveri P
    Dev Biol; 2009 Nov; 335(2):428-41. PubMed ID: 19679118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.