BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 18413718)

  • 1. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination.
    Kawauchi J; Mischo H; Braglia P; Rondon A; Proudfoot NJ
    Genes Dev; 2008 Apr; 22(8):1082-92. PubMed ID: 18413718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient termination of transcription by RNA polymerase I requires the 5' exonuclease Rat1 in yeast.
    El Hage A; Koper M; Kufel J; Tollervey D
    Genes Dev; 2008 Apr; 22(8):1069-81. PubMed ID: 18413717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-transcriptional RNA cleavage provides a failsafe termination mechanism for yeast RNA polymerase I.
    Braglia P; Kawauchi J; Proudfoot NJ
    Nucleic Acids Res; 2011 Mar; 39(4):1439-48. PubMed ID: 20972219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription termination of RNA polymerase I due to a T-rich element interacting with Reb1p.
    Lang WH; Reeder RH
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9781-5. PubMed ID: 7568217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA polymerase I transcription termination: similar mechanisms are employed by yeast and mammals.
    Mason SW; Wallisch M; Grummt I
    J Mol Biol; 1997 May; 268(2):229-34. PubMed ID: 9159465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p.
    Prescott EM; Osheim YN; Jones HS; Alen CM; Roan JG; Reeder RH; Beyer AL; Proudfoot NJ
    Proc Natl Acad Sci U S A; 2004 Apr; 101(16):6068-73. PubMed ID: 15073335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae.
    Rondón AG; Mischo HE; Kawauchi J; Proudfoot NJ
    Mol Cell; 2009 Oct; 36(1):88-98. PubMed ID: 19818712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the RNA/DNA kinase Grc3 in transcription termination by RNA polymerase I.
    Braglia P; Heindl K; Schleiffer A; Martinez J; Proudfoot NJ
    EMBO Rep; 2010 Oct; 11(10):758-64. PubMed ID: 20814424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast.
    Porrua O; Libri D
    Nat Struct Mol Biol; 2013 Jul; 20(7):884-91. PubMed ID: 23748379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative chromatin structures of the 35S rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II.
    Goetze H; Wittner M; Hamperl S; Hondele M; Merz K; Stoeckl U; Griesenbeck J
    Mol Cell Biol; 2010 Apr; 30(8):2028-45. PubMed ID: 20154141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The yeast 5'-3' exonuclease Rat1p functions during transcription elongation by RNA polymerase II.
    Jimeno-González S; Haaning LL; Malagon F; Jensen TH
    Mol Cell; 2010 Feb; 37(4):580-7. PubMed ID: 20188675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dismantling promoter-driven RNA polymerase II transcription complexes in vitro by the termination factor Rat1.
    Pearson EL; Moore CL
    J Biol Chem; 2013 Jul; 288(27):19750-9. PubMed ID: 23689372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factor UAF, expansion and contraction of ribosomal DNA (rDNA) repeats, and RNA polymerase switch in transcription of yeast rDNA.
    Oakes M; Siddiqi I; Vu L; Aris J; Nomura M
    Mol Cell Biol; 1999 Dec; 19(12):8559-69. PubMed ID: 10567580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro.
    Dengl S; Cramer P
    J Biol Chem; 2009 Aug; 284(32):21270-9. PubMed ID: 19535338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes.
    Baejen C; Andreani J; Torkler P; Battaglia S; Schwalb B; Lidschreiber M; Maier KC; Boltendahl A; Rus P; Esslinger S; Söding J; Cramer P
    Mol Cell; 2017 Apr; 66(1):38-49.e6. PubMed ID: 28318822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA polymerase I-promoted HIS4 expression yields uncapped, polyadenylated mRNA that is unstable and inefficiently translated in Saccharomyces cerevisiae.
    Lo HJ; Huang HK; Donahue TF
    Mol Cell Biol; 1998 Feb; 18(2):665-75. PubMed ID: 9447962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the Influence of the A12.2 Subunit on Transcription Elongation and Termination by RNA Polymerase I In Vivo.
    Clarke AM; Huffines AK; Edwards YJK; Petit CM; Schneider DA
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946888
    [No Abstract]   [Full Text] [Related]  

  • 18. RNA Polymerase II Transcription Attenuation at the Yeast DNA Repair Gene,
    Whalen C; Tuohy C; Tallo T; Kaufman JW; Moore C; Kuehner JN
    G3 (Bethesda); 2018 May; 8(6):2043-2058. PubMed ID: 29686108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast RNase III triggers polyadenylation-independent transcription termination.
    Ghazal G; Gagnon J; Jacques PE; Landry JR; Robert F; Elela SA
    Mol Cell; 2009 Oct; 36(1):99-109. PubMed ID: 19818713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli rho factor induces release of yeast RNA polymerase II but not polymerase I or III.
    Lang WH; Platt T; Reeder RH
    Proc Natl Acad Sci U S A; 1998 Apr; 95(9):4900-5. PubMed ID: 9560200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.