BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 18413721)

  • 1. Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation.
    Rodriguez-Gonzalez A; Lin T; Ikeda AK; Simms-Waldrip T; Fu C; Sakamoto KM
    Cancer Res; 2008 Apr; 68(8):2557-60. PubMed ID: 18413721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy: links with the proteasome.
    Lamark T; Johansen T
    Curr Opin Cell Biol; 2010 Apr; 22(2):192-8. PubMed ID: 19962293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A new mechanism of ubiquitin-dependent proteolytic pathway--polyubiquitin chain recognition and proteasomal targeting].
    Kawahara H; Yokosawa H
    Gan To Kagaku Ryoho; 2008 Jan; 35(1):11-5. PubMed ID: 18195523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for ubiquitin in selective autophagy.
    Kirkin V; McEwan DG; Novak I; Dikic I
    Mol Cell; 2009 May; 34(3):259-69. PubMed ID: 19450525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggresome formation.
    Corboy MJ; Thomas PJ; Wigley WC
    Methods Mol Biol; 2005; 301():305-27. PubMed ID: 15917642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BAG3 and friends: co-chaperones in selective autophagy during aging and disease.
    Behl C
    Autophagy; 2011 Jul; 7(7):795-8. PubMed ID: 21681022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of ubiquitin linkages on alpha-synuclein induced-toxicity in a Drosophila model of Parkinson's disease.
    Lee FK; Wong AK; Lee YW; Wan OW; Chan HY; Chung KK
    J Neurochem; 2009 Jul; 110(1):208-19. PubMed ID: 19457126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains.
    Hao R; Nanduri P; Rao Y; Panichelli RS; Ito A; Yoshida M; Yao TP
    Mol Cell; 2013 Sep; 51(6):819-28. PubMed ID: 24035499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal DnaJ proteins HSJ1a and HSJ1b: a role in linking the Hsp70 chaperone machine to the ubiquitin-proteasome system?
    Chapple JP; van der Spuy J; Poopalasundaram S; Cheetham ME
    Biochem Soc Trans; 2004 Aug; 32(Pt 4):640-2. PubMed ID: 15270696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications.
    Williams A; Jahreiss L; Sarkar S; Saiki S; Menzies FM; Ravikumar B; Rubinsztein DC
    Curr Top Dev Biol; 2006; 76():89-101. PubMed ID: 17118264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulation of proteasome degradation by multi-ubiquitin chain binding proteins.
    Miller J; Gordon C
    FEBS Lett; 2005 Jun; 579(15):3224-30. PubMed ID: 15943965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physalin B, a novel inhibitor of the ubiquitin-proteasome pathway, triggers NOXA-associated apoptosis.
    Vandenberghe I; Créancier L; Vispé S; Annereau JP; Barret JM; Pouny I; Samson A; Aussagues Y; Massiot G; Ausseil F; Bailly C; Kruczynski A
    Biochem Pharmacol; 2008 Aug; 76(4):453-62. PubMed ID: 18577376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of regulator of calcineurin 1 (RCAN1) is mediated by both chaperone-mediated autophagy and ubiquitin proteasome pathways.
    Liu H; Wang P; Song W; Sun X
    FASEB J; 2009 Oct; 23(10):3383-92. PubMed ID: 19509306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases.
    Hyttinen JM; Amadio M; Viiri J; Pascale A; Salminen A; Kaarniranta K
    Ageing Res Rev; 2014 Nov; 18():16-28. PubMed ID: 25062811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaperone-mediated 26S proteasome remodeling facilitates free K63 ubiquitin chain production and aggresome clearance.
    Nanduri P; Hao R; Fitzpatrick T; Yao TP
    J Biol Chem; 2015 Apr; 290(15):9455-64. PubMed ID: 25713068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments.
    Ben-Gedalya T; Lyakhovetsky R; Yedidia Y; Bejerano-Sagie M; Kogan NM; Karpuj MV; Kaganovich D; Cohen E
    J Cell Sci; 2011 Jun; 124(Pt 11):1891-902. PubMed ID: 21558416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteasome degradation of protein C and plasmin inhibitor mutants.
    Nishio M; Koyama T; Nakahara M; Egawa N; Hirosawa S
    Thromb Haemost; 2008 Sep; 100(3):405-12. PubMed ID: 18766255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aggresome pathway as a target for therapy in hematologic malignancies.
    Simms-Waldrip T; Rodriguez-Gonzalez A; Lin T; Ikeda AK; Fu C; Sakamoto KM
    Mol Genet Metab; 2008 Jul; 94(3):283-6. PubMed ID: 18472289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggresome formation and neurodegenerative diseases: therapeutic implications.
    Olzmann JA; Li L; Chin LS
    Curr Med Chem; 2008; 15(1):47-60. PubMed ID: 18220762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein degradation and protection against misfolded or damaged proteins.
    Goldberg AL
    Nature; 2003 Dec; 426(6968):895-9. PubMed ID: 14685250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.