These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18413965)

  • 21. Biodynamic response of seated human body to vertical and added lateral and roll vibrations.
    Wu J; Qiu Y; Zhou H
    Ergonomics; 2022 Apr; 65(4):546-560. PubMed ID: 34503399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration.
    Liu C; Qiu Y; Griffin MJ
    J Biomech; 2017 Aug; 61():176-182. PubMed ID: 28780186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling the dynamic mechanisms associated with the principal resonance of the seated human body.
    Matsumoto Y; Griffin MJ
    Clin Biomech (Bristol, Avon); 2001; 16 Suppl 1():S31-44. PubMed ID: 11275341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy absorption of seated occupants exposed to horizontal vibration and role of back support condition.
    Rakheja S; Mandapuram S; Dong RG
    Ind Health; 2008 Dec; 46(6):550-66. PubMed ID: 19088407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting discomfort from whole-body vertical vibration when sitting with an inclined backrest.
    Basri B; Griffin MJ
    Appl Ergon; 2013 May; 44(3):423-34. PubMed ID: 23190680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency weightings for fore-and-aft vibration at the back: effect of contact location, contact area, and body posture.
    Morioka M; Griffin MJ
    Ind Health; 2010; 48(5):538-49. PubMed ID: 20953071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole-body vibration exposure in unfavourable seated postures: apparent mass and seat-to-head transmissibility measurements in the fore-and-aft, lateral, and vertical directions.
    Amari M; Perrin N
    Ergonomics; 2023 Jan; 66(1):136-151. PubMed ID: 35543592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of spinal loading in vertical vibrations by numerical simulation.
    Verver MM; van Hoof J; Oomens CW; van de Wouw N; Wismans JS
    Clin Biomech (Bristol, Avon); 2003 Nov; 18(9):800-11. PubMed ID: 14527806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Equivalent comfort contours for vertical seat vibration: effect of vibration magnitude and backrest inclination.
    Basri B; Griffin MJ
    Ergonomics; 2012; 55(8):909-22. PubMed ID: 22533797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of backrest and torso twist on the apparent mass of the seated body exposed to vertical vibration.
    Mansfield NJ; Maeda S
    Ind Health; 2005 Jul; 43(3):413-20. PubMed ID: 16100918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element modeling and parameter identification of the seated human body exposed to vertical vibration.
    Gao K; Li C; Xiao Y; Zhang Z
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1789-1803. PubMed ID: 34268622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response of the seated human body to whole-body vertical vibration: biodynamic responses to mechanical shocks.
    Zhou Z; Griffin MJ
    Ergonomics; 2017 Mar; 60(3):333-346. PubMed ID: 27206993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental investigation of biodynamic human body models subjected to whole-body vibration during a vehicle ride.
    Taskin Y; Hacioglu Y; Ortes F; Karabulut D; Arslan YZ
    Int J Occup Saf Ergon; 2019 Dec; 25(4):530-544. PubMed ID: 29252111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterisation of the human-seat coupling in response to vibration.
    Kim E; Fard M; Kato K
    Ergonomics; 2017 Aug; 60(8):1085-1100. PubMed ID: 27780424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of posture and seat suspension design on discomfort and back muscle fatigue during simulated truck driving.
    Wilder D; Magnusson ML; Fenwick J; Pope M
    Appl Ergon; 1994 Apr; 25(2):66-76. PubMed ID: 15676952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human body modeling method to simulate the biodynamic characteristics of spine in vivo with different sitting postures.
    Dong RC; Guo LX
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28264145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Models of the apparent mass of the seated human body exposed to horizontal whole-body vibration.
    Mansfield NJ; Lundström R
    Aviat Space Environ Med; 1999 Dec; 70(12):1166-72. PubMed ID: 10596769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apparent mass of the seated human body during vertical vibration in the frequency range 2-100 Hz.
    Huang Y; Zhang P; Liang S
    Ergonomics; 2020 Sep; 63(9):1150-1163. PubMed ID: 32401623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Biodynamic responses of the seated posture of human upper-body under horizontal and vertical stimuli].
    Wang X; Jiang F; Ma J; Hou X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):101-4. PubMed ID: 18435267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodynamic responses of the seated human body to single-axis and dual-axis vibration.
    Qiu Y; Griffin MJ
    Ind Health; 2010; 48(5):615-27. PubMed ID: 20953078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.