These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 18414635)
1. Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity. Zhu H; Rusyn I; Richard A; Tropsha A Environ Health Perspect; 2008 Apr; 116(4):506-13. PubMed ID: 18414635 [TBL] [Abstract][Full Text] [Related]
2. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Sedykh A; Zhu H; Tang H; Zhang L; Richard A; Rusyn I; Tropsha A Environ Health Perspect; 2011 Mar; 119(3):364-70. PubMed ID: 20980217 [TBL] [Abstract][Full Text] [Related]
3. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related]
4. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents. Zhu H; Ye L; Richard A; Golbraikh A; Wright FA; Rusyn I; Tropsha A Environ Health Perspect; 2009 Aug; 117(8):1257-64. PubMed ID: 19672406 [TBL] [Abstract][Full Text] [Related]
6. How well can in vitro data predict in vivo effects of chemicals? Rodent carcinogenicity as a case study. Anthony Tony Cox L; Popken DA; Kaplan AM; Plunkett LM; Becker RA Regul Toxicol Pharmacol; 2016 Jun; 77():54-64. PubMed ID: 26879462 [TBL] [Abstract][Full Text] [Related]
7. The comet assay with multiple mouse organs: comparison of comet assay results and carcinogenicity with 208 chemicals selected from the IARC monographs and U.S. NTP Carcinogenicity Database. Sasaki YF; Sekihashi K; Izumiyama F; Nishidate E; Saga A; Ishida K; Tsuda S Crit Rev Toxicol; 2000 Nov; 30(6):629-799. PubMed ID: 11145306 [TBL] [Abstract][Full Text] [Related]
8. Differentiation of AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and application of the QSAR classifier to virtual screening. Hsieh JH; Wang XS; Teotico D; Golbraikh A; Tropsha A J Comput Aided Mol Des; 2008 Sep; 22(9):593-609. PubMed ID: 18338225 [TBL] [Abstract][Full Text] [Related]
9. Prediction of carcinogenicity for diverse chemicals based on substructure grouping and SVM modeling. Tanabe K; Lučić B; Amić D; Kurita T; Kaihara M; Onodera N; Suzuki T Mol Divers; 2010 Nov; 14(4):789-802. PubMed ID: 20186479 [TBL] [Abstract][Full Text] [Related]
10. In vitro perturbations of targets in cancer hallmark processes predict rodent chemical carcinogenesis. Kleinstreuer NC; Dix DJ; Houck KA; Kavlock RJ; Knudsen TB; Martin MT; Paul KB; Reif DM; Crofton KM; Hamilton K; Hunter R; Shah I; Judson RS Toxicol Sci; 2013 Jan; 131(1):40-55. PubMed ID: 23024176 [TBL] [Abstract][Full Text] [Related]
12. Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses. Fjodorova N; Vračko M; Tušar M; Jezierska A; Novič M; Kühne R; Schüürmann G Mol Divers; 2010 Aug; 14(3):581-94. PubMed ID: 19685274 [TBL] [Abstract][Full Text] [Related]
14. ARKA: a framework of dimensionality reduction for machine-learning classification modeling, risk assessment, and data gap-filling of sparse environmental toxicity data. Banerjee A; Roy K Environ Sci Process Impacts; 2024 Jun; 26(6):991-1007. PubMed ID: 38743054 [TBL] [Abstract][Full Text] [Related]
15. Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices. Contrera JF; Matthews EJ; Daniel Benz R Regul Toxicol Pharmacol; 2003 Dec; 38(3):243-59. PubMed ID: 14623477 [TBL] [Abstract][Full Text] [Related]
16. In Silico Study of In Vitro GPCR Assays by QSAR Modeling. Mansouri K; Judson RS Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474 [TBL] [Abstract][Full Text] [Related]
17. Prediction of chemical carcinogenicity by machine learning approaches. Tan NX; Rao HB; Li ZR; Li XY SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583 [TBL] [Abstract][Full Text] [Related]
18. Quantitative structure-activity relationship modelling of the carcinogenic risk of nitroso compounds using regression analysis and the TOPS-MODE approach. Helguera AM; Pérez-Machado G; Cordeiro MN; Combes RD SAR QSAR Environ Res; 2010 Apr; 21(3-4):277-304. PubMed ID: 20544552 [TBL] [Abstract][Full Text] [Related]
19. A topological substructural approach applied to the computational prediction of rodent carcinogenicity. Helguera AM; Cabrera Pérez MA; González MP; Ruiz RM; González Díaz H Bioorg Med Chem; 2005 Apr; 13(7):2477-88. PubMed ID: 15755650 [TBL] [Abstract][Full Text] [Related]
20. Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures and short-term toxicity assay data. Rusyn I; Sedykh A; Low Y; Guyton KZ; Tropsha A Toxicol Sci; 2012 May; 127(1):1-9. PubMed ID: 22387746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]