These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 18414721)
1. Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors. Di CA; Yu G; Liu Y; Guo Y; Wu W; Wei D; Zhu D Phys Chem Chem Phys; 2008 May; 10(17):2302-7. PubMed ID: 18414721 [TBL] [Abstract][Full Text] [Related]
2. High-performance low-cost organic field-effect transistors with chemically modified bottom electrodes. Di CA; Yu G; Liu Y; Xu X; Wei D; Song Y; Sun Y; Wang Y; Zhu D; Liu J; Liu X; Wu D J Am Chem Soc; 2006 Dec; 128(51):16418-9. PubMed ID: 17177348 [TBL] [Abstract][Full Text] [Related]
3. Interface engineering: an effective approach toward high-performance organic field-effect transistors. Di CA; Liu Y; Yu G; Zhu D Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474 [TBL] [Abstract][Full Text] [Related]
4. High-performance organic field-effect transistors: molecular design, device fabrication, and physical properties. Di CA; Yu G; Liu Y; Zhu D J Phys Chem B; 2007 Dec; 111(51):14083-96. PubMed ID: 18052267 [TBL] [Abstract][Full Text] [Related]
5. Bottom-contact poly(3,3'''-didodecylquaterthiophene) thin-film transistors with gold source-drain electrodes modified by alkanethiol monolayers. Cai QJ; Chan-Park MB; Lu ZS; Li CM; Ong BS Langmuir; 2008 Oct; 24(20):11889-94. PubMed ID: 18774833 [TBL] [Abstract][Full Text] [Related]
6. Homoleptic copper(I) arylthiolates as a new class of p-type charge carriers: structures and charge mobility studies. Che CM; Li CH; Chui SS; Roy VA; Low KH Chemistry; 2008; 14(10):2965-75. PubMed ID: 18350558 [TBL] [Abstract][Full Text] [Related]
7. 3D Hollow Framework Silver Nanowire Electrodes for High-Performance Bottom-Contact Organic Transistors. Kim J; Lee SH; Kim H; Kim SH; Park CE ACS Appl Mater Interfaces; 2015 Jul; 7(26):14272-8. PubMed ID: 26083099 [TBL] [Abstract][Full Text] [Related]
8. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films. Nafady A; Bond AM; Bilyk A; Harris AR; Bhatt AI; O'Mullane AP; De Marco R J Am Chem Soc; 2007 Feb; 129(8):2369-82. PubMed ID: 17263534 [TBL] [Abstract][Full Text] [Related]
9. Effect of dielectric layers on device stability of pentacene-based field-effect transistors. Di CA; Yu G; Liu Y; Guo Y; Sun X; Zheng J; Wen Y; Wang Y; Wu W; Zhu D Phys Chem Chem Phys; 2009 Sep; 11(33):7268-73. PubMed ID: 19672538 [TBL] [Abstract][Full Text] [Related]
10. Improved morphology and performance from surface treatments of naphthalenetetracarboxylic diimide bottom contact field-effect transistors. Sun J; Devine R; Dhar BM; Jung BJ; See KC; Katz HE ACS Appl Mater Interfaces; 2009 Aug; 1(8):1763-9. PubMed ID: 20355793 [TBL] [Abstract][Full Text] [Related]
11. Control of localized nanorod formation and patterns of semiconducting CuTCNQ phase I crystals by scanning electrochemical microscopy. Neufeld AK; O'Mullane AP; Bond AM J Am Chem Soc; 2005 Oct; 127(40):13846-53. PubMed ID: 16201805 [TBL] [Abstract][Full Text] [Related]
12. Soft-Etching Copper and Silver Electrodes for Significant Device Performance Improvement toward Facile, Cost-Effective, Bottom-Contacted, Organic Field-Effect Transistors. Wang Z; Dong H; Zou Y; Zhao Q; Tan J; Liu J; Lu X; Xiao J; Zhang Q; Hu W ACS Appl Mater Interfaces; 2016 Mar; 8(12):7919-27. PubMed ID: 26967358 [TBL] [Abstract][Full Text] [Related]
13. High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. Tang Q; Li H; Liu Y; Hu W J Am Chem Soc; 2006 Nov; 128(45):14634-9. PubMed ID: 17090049 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of organic field effect transistor by directly grown poly(3 hexylthiophene) crystalline nanowires on carbon nanotube aligned array electrode. Sarker BK; Liu J; Zhai L; Khondaker SI ACS Appl Mater Interfaces; 2011 Apr; 3(4):1180-5. PubMed ID: 21405101 [TBL] [Abstract][Full Text] [Related]
15. Templating and charge injection from copper electrodes into solution-processed organic field-effect transistors. Kim CH; Hlaing H; Carta F; Bonnassieux Y; Horowitz G; Kymissis I ACS Appl Mater Interfaces; 2013 May; 5(9):3716-21. PubMed ID: 23611406 [TBL] [Abstract][Full Text] [Related]
16. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors. Lee WH; Park J; Sim SH; Lim S; Kim KS; Hong BH; Cho K J Am Chem Soc; 2011 Mar; 133(12):4447-54. PubMed ID: 21381751 [TBL] [Abstract][Full Text] [Related]
17. High performance organic thin film transistors with solution processed TTF-TCNQ charge transfer salt as electrodes. Mukherjee B; Mukherjee M Langmuir; 2011 Sep; 27(17):11246-50. PubMed ID: 21812432 [TBL] [Abstract][Full Text] [Related]
18. Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability. Guo X; Ortiz RP; Zheng Y; Hu Y; Noh YY; Baeg KJ; Facchetti A; Marks TJ J Am Chem Soc; 2011 Feb; 133(5):1405-18. PubMed ID: 21207965 [TBL] [Abstract][Full Text] [Related]
19. Molecular orientation and interface compatibility for high performance organic thin film transistor based on vanadyl phthalocyanine. Li L; Tang Q; Li H; Hu W J Phys Chem B; 2008 Aug; 112(34):10405-10. PubMed ID: 18671428 [TBL] [Abstract][Full Text] [Related]
20. Novel small molecules for organic field-effect transistors: towards processability and high performance. Mas-Torrent M; Rovira C Chem Soc Rev; 2008 Apr; 37(4):827-38. PubMed ID: 18362986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]