BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 18414795)

  • 1. Comparison between Escherichia coli K-12 strains W3110 and MG1655 and wild-type E. coli B as platforms for xylitol production.
    Khankal R; Luziatelli F; Chin JW; Frei CS; Cirino PC
    Biotechnol Lett; 2008 Sep; 30(9):1645-53. PubMed ID: 18414795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of xylose transporters in xylitol production from engineered Escherichia coli.
    Khankal R; Chin JW; Cirino PC
    J Biotechnol; 2008 Apr; 134(3-4):246-52. PubMed ID: 18359531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures.
    Cirino PC; Chin JW; Ingram LO
    Biotechnol Bioeng; 2006 Dec; 95(6):1167-76. PubMed ID: 16838379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.
    Chin JW; Cirino PC
    Biotechnol Prog; 2011; 27(2):333-41. PubMed ID: 21344680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.
    Kim JH; Han KC; Koh YH; Ryu YW; Seo JH
    J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid.
    Dien BS; Nichols NN; Bothast RJ
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):221-7. PubMed ID: 12407454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of xylitol from D-xylose by recombinant Lactococcus lactis.
    Nyyssölä A; Pihlajaniemi A; Palva A; von Weymarn N; Leisola M
    J Biotechnol; 2005 Jul; 118(1):55-66. PubMed ID: 15916828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of the CRP mutation and ptsG deletion in Escherichia coli to efficiently synthesize xylitol from corncob hydrolysates.
    Yuan X; Tu S; Lin J; Yang L; Shen H; Wu M
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2039-2050. PubMed ID: 31950219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.
    Hanly TJ; Henson MA
    Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Apr; 86(4):1057-66. PubMed ID: 20012280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose.
    Vinuselvi P; Lee SK
    Enzyme Microb Technol; 2012 Jan; 50(1):1-4. PubMed ID: 22133432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor.
    Rodrigues RC; Lu C; Lin B; Jeffries TW
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures.
    Guo Q; Ullah I; Zheng LJ; Gao XQ; Liu CY; Zheng HD; Fan LH; Deng L
    Biotechnol Bioeng; 2022 Feb; 119(2):388-398. PubMed ID: 34837379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of xylitol production by the yeast Candida mogii.
    Tochampa W; Sirisansaneeyakul S; Vanichsriratana W; Srinophakun P; Bakker HH; Chisti Y
    Bioprocess Biosyst Eng; 2005 Dec; 28(3):175-83. PubMed ID: 16215727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium.
    Khunnonkwao P; Jantama SS; Kanchanatawee S; Jantama K
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):127-141. PubMed ID: 29079860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability.
    Meinander NQ; Hahn-Hägerdal B
    Biotechnol Bioeng; 1997 May; 54(4):391-9. PubMed ID: 18634106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.