BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18414950)

  • 1. The iridoid glucoside, antirrhinoside, from Antirrhinum majus L. has differential effects on two generalist insect herbivores.
    Beninger CW; Cloutier RR; Grodzinski B
    J Chem Ecol; 2008 May; 34(5):591-600. PubMed ID: 18414950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The distribution of two major Iridoids in different organs of Antirrhinum majus L. at selected stages of development.
    Beninger CW; Cloutier RR; Monteiro MA; Grodzinski B
    J Chem Ecol; 2007 Apr; 33(4):731-47. PubMed ID: 17334922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of antirrhinoside distribution in the organs of two related Plantaginaceae species with different reproductive strategies.
    Beninger CW; Cloutier RR; Grodzinski B
    J Chem Ecol; 2009 Nov; 35(11):1363-72. PubMed ID: 19949840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant chemical defense against herbivores and pathogens: generalized defense or trade-offs?
    Biere A; Marak HB; van Damme JM
    Oecologia; 2004 Aug; 140(3):430-41. PubMed ID: 15146326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of poplar salicinoids by the generalist herbivore Lymantria dispar (Lepidoptera).
    Boeckler GA; Paetz C; Feibicke P; Gershenzon J; Unsicker SB
    Insect Biochem Mol Biol; 2016 Nov; 78():39-49. PubMed ID: 27503687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the dual defence system of Plantago lanceolata (Plantaginaceae) on performance, nutrient utilisation and feeding choice behaviour of Amata mogadorensis larvae (Lepidoptera, Erebidae).
    Pankoke H; Gehring R; Müller C
    J Insect Physiol; 2015 Nov; 82():99-108. PubMed ID: 26306994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interplay between toxin-releasing β-glucosidase and plant iridoid glycosides impairs larval development in a generalist caterpillar, Grammia incorrupta (Arctiidae).
    Pankoke H; Bowers MD; Dobler S
    Insect Biochem Mol Biol; 2012 Jun; 42(6):426-34. PubMed ID: 22446106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oak genotype and phenolic compounds differently affect the performance of two insect herbivores with contrasting diet breadth.
    Damestoy T; Brachi B; Moreira X; Jactel H; Plomion C; Castagneyrol B
    Tree Physiol; 2019 Apr; 39(4):615-627. PubMed ID: 30668790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flavanone and two phenolic acids from Chrysanthemum morifolium with phytotoxic and insect growth regulating activity.
    Beninger CW; Abou-Zaid MM; Kistner AL; Hallett RH; Iqbal MJ; Grodzinski B; Hall JC
    J Chem Ecol; 2004 Mar; 30(3):589-606. PubMed ID: 15139310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein:Carbohydrate Ratios in the Diet of Gypsy Moth Lymantria dispar Affect its Ability to Tolerate Tannins.
    Perkovich C; Ward D
    J Chem Ecol; 2020 Mar; 46(3):299-307. PubMed ID: 32060667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of quantitative variation in allelochemicals in Plantago lanceolata on development of a generalist and a specialist herbivore and their endoparasitoids.
    Harvey JA; van Nouhuys S; Biere A
    J Chem Ecol; 2005 Feb; 31(2):287-302. PubMed ID: 15856784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HPLC analysis of the seasonal and diurnal variation of iridoids in cultivars of Antirrhinum majus.
    Drøhse Høgedal B ; Mølgaard P
    Biochem Syst Ecol; 2000 Dec; 28(10):949-962. PubMed ID: 10996260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata.
    Reudler JH; Biere A; Harvey JA; van Nouhuys S
    J Chem Ecol; 2011 Jul; 37(7):765-78. PubMed ID: 21691810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorine-containing iridoid and iridoid glucoside, and other glucosides from leaves of Myoporum bontioides.
    Kanemoto M; Matsunami K; Otsuka H; Shinzato T; Ishigaki C; Takeda Y
    Phytochemistry; 2008 Oct; 69(13):2517-22. PubMed ID: 18755483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major.
    Pankoke H; Buschmann T; Müller C
    Phytochemistry; 2013 Oct; 94():99-107. PubMed ID: 23773298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Larval exposure to oviposition deterrents alters subsequent oviposition behavior in generalist, Trichoplusia ni and specialist, Plutella xylostella moths.
    Akhtar Y; Isman MB
    J Chem Ecol; 2003 Aug; 29(8):1853-70. PubMed ID: 12956511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host plant resistance in romaine lettuce affects feeding behavior and biology of Trichoplusia ni and Spodoptera exigua (Lepidoptera: Noctuidae).
    Sethi A; McAuslane HJ; Nagata RT; Nuessly GS
    J Econ Entomol; 2006 Dec; 99(6):2156-63. PubMed ID: 17195688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host plant driven transcriptome plasticity in the salivary glands of the cabbage looper (Trichoplusia ni).
    Rivera-Vega LJ; Galbraith DA; Grozinger CM; Felton GW
    PLoS One; 2017; 12(8):e0182636. PubMed ID: 28792546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabolic fate of dietary nicotine in the cabbage looper, Trichoplusia ni (Hübner).
    Saremba BM; Murch SJ; Tymm FJM; Rheault MR
    J Insect Physiol; 2018; 109():1-10. PubMed ID: 29859839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant growth regulator-mediated anti-herbivore responses of cabbage (Brassica oleracea) against cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae).
    Scott IM; Samara R; Renaud JB; Sumarah MW
    Pestic Biochem Physiol; 2017 Sep; 141():9-17. PubMed ID: 28911746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.