These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18415989)

  • 1. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate.
    Bai DM; Li SZ; Liu ZL; Cui ZF
    Appl Biochem Biotechnol; 2008 Jan; 144(1):79-85. PubMed ID: 18415989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18.
    Guo Y; Yan Q; Jiang Z; Teng C; Wang X
    J Ind Microbiol Biotechnol; 2010 Nov; 37(11):1137-43. PubMed ID: 20556475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactic acid production from xylose by the fungus Rhizopus oryzae.
    Maas RH; Bakker RR; Eggink G; Weusthuis RA
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae.
    Zhang L; Li X; Yong Q; Yang ST; Ouyang J; Yu S
    Bioresour Technol; 2016 Mar; 203():173-80. PubMed ID: 26724548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using tobacco waste extract in pre-culture medium to improve xylose utilization for l-lactic acid production from cellulosic waste by Rhizopus oryzae.
    Zheng Y; Wang Y; Zhang J; Pan J
    Bioresour Technol; 2016 Oct; 218():344-50. PubMed ID: 27376833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae.
    Saito K; Hasa Y; Abe H
    J Biosci Bioeng; 2012 Aug; 114(2):166-9. PubMed ID: 22578599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of cultivation conditions on the optical purity of L(+)-lactic acid].
    Meng W; Li S; Feng W; Zhang H; Wang R
    Sheng Wu Gong Cheng Xue Bao; 2009 Nov; 25(11):1679-83. PubMed ID: 20222467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on L+-lactic acid production.
    Maas RH; Springer J; Eggink G; Weusthuis RA
    J Ind Microbiol Biotechnol; 2008 Jun; 35(6):569-78. PubMed ID: 18247072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue.
    Bai Z; Gao Z; Sun J; Wu B; He B
    Bioresour Technol; 2016 May; 207():346-52. PubMed ID: 26897413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy.
    Fu YQ; Yin LF; Zhu HY; Jiang R
    Bioresour Technol; 2016 Oct; 218():410-7. PubMed ID: 27393831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae.
    Park EY; Anh PN; Okuda N
    Bioresour Technol; 2004 May; 93(1):77-83. PubMed ID: 14987724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [L-lactic acid fermentation by immobilized Rhizopus oryzae in a three-phase fluidized-bed].
    Chen Y; Xia L; Cen P
    Wei Sheng Wu Xue Bao; 2000 Aug; 40(4):415-9. PubMed ID: 12548964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor.
    Wu X; Jiang S; Liu M; Pan L; Zheng Z; Luo S
    J Ind Microbiol Biotechnol; 2011 Apr; 38(4):565-71. PubMed ID: 20824489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient hydrolysis of corncob residue through cellulolytic enzymes from Trichoderma strain G26 and L-lactic acid preparation with the hydrolysate.
    Xie L; Zhao J; Wu J; Gao M; Zhao Z; Lei X; Zhao Y; Yang W; Gao X; Ma C; Liu H; Wu F; Wang X; Zhang F; Guo P; Dai G
    Bioresour Technol; 2015 Oct; 193():331-6. PubMed ID: 26143000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.
    Zhang Y; Vadlani PV
    J Biosci Bioeng; 2015 Jun; 119(6):694-9. PubMed ID: 25561329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Fumaric Acid by Bioconversion of Corncob Hydrolytes Using an Improved Rhizopus oryzae Strain.
    Wu X; Liu Q; Deng Y; Chen X; Zheng Z; Jiang S; Li X
    Appl Biochem Biotechnol; 2018 Feb; 184(2):553-569. PubMed ID: 28791562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactic acid production from cellulosic material by synergetic hydrolysis and fermentation.
    Shen X; Xia L
    Appl Biochem Biotechnol; 2006 Jun; 133(3):251-62. PubMed ID: 16720905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams.
    Jin B; Yin P; Ma Y; Zhao L
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):678-86. PubMed ID: 16208461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain.
    Wang L; Zhao B; Liu B; Yu B; Ma C; Su F; Hua D; Li Q; Ma Y; Xu P
    Bioresour Technol; 2010 Oct; 101(20):7908-15. PubMed ID: 20627714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an oat-based biorefinery for the production of L(+)-lactic acid by Rhizopus oryzae and various value-added coproducts.
    Koutinas AA; Malbranque F; Wang R; Campbell GM; Webb C
    J Agric Food Chem; 2007 Mar; 55(5):1755-61. PubMed ID: 17288441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.