BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1841616)

  • 21. Involvement of thalamic paraventricular nucleus in the anticipatory reaction under food restriction in the rat.
    Nakahara K; Fukui K; Murakami N
    J Vet Med Sci; 2004 Oct; 66(10):1297-300. PubMed ID: 15528870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dietary restriction and aging.
    Masoro EJ
    J Am Geriatr Soc; 1993 Sep; 41(9):994-9. PubMed ID: 8409187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ontogeny of circadian corticosterone rhythm in female rats: effects of periodic maternal deprivation and food restriction.
    Miyabo S; Yanagisawa KI; Ooya E; Hisada T; Kishida S
    Endocrinology; 1980 Feb; 106(2):636-42. PubMed ID: 7353531
    [No Abstract]   [Full Text] [Related]  

  • 24. Saving energy during hard times: energetic adaptations of Shetland pony mares.
    Brinkmann L; Gerken M; Hambly C; Speakman JR; Riek A
    J Exp Biol; 2014 Dec; 217(Pt 24):4320-7. PubMed ID: 25359931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Indy knockdown in mice mimics elements of dietary restriction.
    Shulman GI; Helfand SL
    Aging (Albany NY); 2011 Aug; 3(8):701. PubMed ID: 21937764
    [No Abstract]   [Full Text] [Related]  

  • 26. The role of fat depletion in the biological benefits of caloric restriction.
    Barzilai N; Gabriely I
    J Nutr; 2001 Mar; 131(3):903S-906S. PubMed ID: 11238783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repeated short-fasting modifies the macronutrient self-selection pattern in rats.
    Lax P; Larue-Achagiotis C; Martel P; Madrid JA; Verger P
    Physiol Behav; 1998 Aug; 65(1):69-76. PubMed ID: 9811367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetic responses of pigeons during food deprivation and restricted feeding.
    Phillips DL; Rashotte ME; Henderson RP
    Physiol Behav; 1991 Jul; 50(1):195-203. PubMed ID: 1946717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Schedule of protein ingestion and circadian rhythm of certain hepatic enzyme activities involved in glucose metabolism in the rat.
    Peret J; Chanez M; Pascal G
    Nutr Metab; 1976; 20(2):143-57. PubMed ID: 8745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diurnal rhythms of hepatic carbohydrate metabolism during development of the rat.
    Walker PR; Bonney RJ; Potter VR
    Biochem J; 1974 Jun; 140(3):523-9. PubMed ID: 4155626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leptin selectively increases energy expenditure of food-restricted lean mice.
    Döring H; Schwarzer K; Nuesslein-Hildesheim B; Schmidt I
    Int J Obes Relat Metab Disord; 1998 Feb; 22(2):83-8. PubMed ID: 9504315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alpha-amylase circadian rhythm of young rat parotid gland: an endogenous rhythm with maternal coordination.
    Bellavía SL; Sanz EG; Sereno R; Vermouth NT
    Arch Oral Biol; 1992; 37(5):429-33. PubMed ID: 1610312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of restricted food access on diurnal fluctuation of behaviors and biochemical functions in hereditary microphthalmic rats.
    Tanaka H; Shim S; Hitomi Y; Sugita S; Sugahara K
    Physiol Behav; 1999 Aug; 67(2):167-72. PubMed ID: 10477046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forced dissociation of food- and light- entrainable circadian rhythms of rats in a skeleton photoperiod.
    Brinkhof MW; Daan S; Strubbe JH
    Physiol Behav; 1998 Nov; 65(2):225-31. PubMed ID: 9855470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dietary restriction reduces luteinizing hormone (LH) pulse frequency during waking hours and increases LH pulse amplitude during sleep in young menstruating women.
    Loucks AB; Heath EM
    J Clin Endocrinol Metab; 1994 Apr; 78(4):910-5. PubMed ID: 8157720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic and hormonal adaptations to diet restriction.
    Curi R
    Nutrition; 1992; 8(1):56-7. PubMed ID: 1562792
    [No Abstract]   [Full Text] [Related]  

  • 37. Role of carbohydrate type on diet selection in neuropeptide Y-stimulated rats.
    Glass MJ; Cleary JP; Billington CJ; Levine AS
    Am J Physiol; 1997 Dec; 273(6):R2040-5. PubMed ID: 9435659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exercise down-regulates hepatic lipogenic enzymes in food-deprived and refed rats.
    Griffiths MA; Fiebig R; Gore MT; Baker DH; Esser K; Oscai L; Ji LL
    J Nutr; 1996 Aug; 126(8):1959-71. PubMed ID: 8759368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An analysis of excessive running in the development of activity anorexia.
    Beneke WM; Schulte SE; vander Tuig JG
    Physiol Behav; 1995 Sep; 58(3):451-7. PubMed ID: 8587951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light-induced phase-shifting of the peripheral circadian oscillator in the hearts of food-deprived mice.
    Sakamoto K; Kadota K; Oishi K
    Exp Anim; 2004 Oct; 53(5):471-4. PubMed ID: 15516798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.