These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 18416892)
1. Raman signal processing software for automated identification of mineral phases and biosignatures on Mars. Sobron P; Sobron F; Sanz A; Rull F Appl Spectrosc; 2008 Apr; 62(4):364-70. PubMed ID: 18416892 [TBL] [Abstract][Full Text] [Related]
2. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Bazalgette Courrèges-Lacoste G; Ahlers B; Pérez FR Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1023-8. PubMed ID: 17466575 [TBL] [Abstract][Full Text] [Related]
3. Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration. Arp ZA; Cremers DA; Wiens RC; Wayne DM; Sallé B; Maurice S Appl Spectrosc; 2004 Aug; 58(8):897-909. PubMed ID: 15324495 [TBL] [Abstract][Full Text] [Related]
4. The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study. Edwards HG; Vandenabeele P; Jorge-Villar SE; Carter EA; Perez FR; Hargreaves MD Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1133-7. PubMed ID: 17600759 [TBL] [Abstract][Full Text] [Related]
5. Raman spectroscopic identification of usnic acid in hydrothermal minerals as a potential Martian analogue. Osterrothová K; Jehlicka J Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):576-80. PubMed ID: 18980859 [TBL] [Abstract][Full Text] [Related]
6. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Edwards HG; Hutchinson I; Ingley R Anal Bioanal Chem; 2012 Oct; 404(6-7):1723-31. PubMed ID: 22865011 [TBL] [Abstract][Full Text] [Related]
7. Detection of Potential Lipid Biomarkers in Oxidative Environments by Raman Spectroscopy and Implications for the ExoMars 2020-Raman Laser Spectrometer Instrument Performance. Carrizo D; Muñoz-Iglesias V; Fernández-Sampedro MT; Gil-Lozano C; Sánchez-García L; Prieto-Ballesteros O; Medina J; Rull F Astrobiology; 2020 Mar; 20(3):405-414. PubMed ID: 31985262 [TBL] [Abstract][Full Text] [Related]
8. Studies of biominerals relevant to the search for life on Mars. Blanco A; D'Elia M; Licchelli D; Orofino V; Fonti S Orig Life Evol Biosph; 2006 Dec; 36(5-6):621-2. PubMed ID: 17120120 [TBL] [Abstract][Full Text] [Related]
9. Development of a surface-enhanced Raman technique for biomarker studies on Mars. Dunn DS; Sridhar N; Miller MA; Price KT; Pabalan R; Abrajano TA Appl Spectrosc; 2007 Jan; 61(1):25-31. PubMed ID: 17311713 [TBL] [Abstract][Full Text] [Related]
11. Raman Characterization of the CanMars Rover Field Campaign Samples Using the Raman Laser Spectrometer ExoMars Simulator: Implications for Mars and Planetary Exploration. Lalla EA; Konstantinidis M; Veneranda M; Daly MG; Manrique JA; Lymer EA; Freemantle J; Cloutis EA; Stromberg JM; Shkolyar S; Caudill C; Applin D; Vago JL; Rull F; Lopez-Reyes G Astrobiology; 2022 Apr; 22(4):416-438. PubMed ID: 35041521 [TBL] [Abstract][Full Text] [Related]
12. A Method for Choosing the Best Samples for Mars Sample Return. Gordon PR; Sephton MA Astrobiology; 2018 May; 18(5):556-570. PubMed ID: 29443541 [TBL] [Abstract][Full Text] [Related]
13. Water related environment modelling on Mars. Kereszturi A J Br Interplanet Soc; 2004; 57(7-8):251-5. PubMed ID: 15856559 [TBL] [Abstract][Full Text] [Related]
14. Raman spectroscopic analysis of arctic nodules: relevance to the astrobiological exploration of Mars. Jorge-Villar SE; Edwards HG; Benning LG; Anal Bioanal Chem; 2011 Nov; 401(9):2927-33. PubMed ID: 21938598 [TBL] [Abstract][Full Text] [Related]
15. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters. Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852 [TBL] [Abstract][Full Text] [Related]
16. FTIR reflectance of selected minerals and their mixtures: implications for ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station). Martín-Redondo MP; Martínez ES; Sampedro MT; Armiens C; Gómez-Elvira J; Martinez-Frias J J Environ Monit; 2009 Jul; 11(7):1428-32. PubMed ID: 20449234 [TBL] [Abstract][Full Text] [Related]
17. Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy. Shkolyar S; Eshelman EJ; Farmer JD; Hamilton D; Daly MG; Youngbull C Astrobiology; 2018 Apr; 18(4):431-453. PubMed ID: 29624103 [TBL] [Abstract][Full Text] [Related]
18. New trends in telescopic remote Raman spectroscopic instrumentation. Sharma SK Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317 [TBL] [Abstract][Full Text] [Related]
20. Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. Jehlicka J; Vítek P; Edwards HG; Heagraves M; Capoun T Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):410-9. PubMed ID: 18993111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]