BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 18416903)

  • 1. Laser-induced fluorescence ratios of Cajanus cajan L. under the stress of cadmium and its correlation with pigment content and pigment ratios.
    Maurya R; Gopal R
    Appl Spectrosc; 2008 Apr; 62(4):433-8. PubMed ID: 18416903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.
    Pandey JK; Dubey G; Gopal R
    J Photochem Photobiol B; 2015 Oct; 151():297-305. PubMed ID: 25228224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis, assessment, modelling, and relevance to photoprotection.
    Merzlyak MN; Melø TB; Naqvi KR
    J Exp Bot; 2008; 59(2):349-59. PubMed ID: 18256050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethnobotanical survey and cytotoxicity testing of plants of South-western Nigeria used to treat cancer, with isolation of cytotoxic constituents from Cajanus cajan Millsp. leaves.
    Ashidi JS; Houghton PJ; Hylands PJ; Efferth T
    J Ethnopharmacol; 2010 Mar; 128(2):501-12. PubMed ID: 20064598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vermicompost and farmyard manure improves food quality, antioxidant and antibacterial potential of Cajanus cajan (L. Mill sp.) leaves.
    Das S; Hussain N; Gogoi B; Buragohain AK; Bhattacharya SS
    J Sci Food Agric; 2017 Feb; 97(3):956-966. PubMed ID: 27226361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating UV-B effects and EDU protection in soybean leaves using fluorescence.
    Middleton EM; Kim MS; Krizek DT; Bajwa RK
    Photochem Photobiol; 2005; 81(5):1075-85. PubMed ID: 16022558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-induced chlorophyll fluorescence: a technique for detection of dimethoate effect on chlorophyll content and photosynthetic activity of wheat plant.
    Pandey JK; Gopal R
    J Fluoresc; 2011 Mar; 21(2):785-91. PubMed ID: 21128104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-induced fluorescence spectral analysis of papaya fruits at different stages of ripening.
    Obledo-Vázquez EN; Cervantes-Martínez J
    Appl Opt; 2017 Feb; 56(6):1753-1756. PubMed ID: 28234384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Normalized difference ratio pigment index for estimating chlorophyll and cartenoid contents of in leaves of rice].
    Wang FM; Huang JF; Wang XZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):1064-8. PubMed ID: 19626904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative study of fluorescence excitation and emission spectra of bean leaves.
    Louis J; Cerovic ZG; Moya I
    J Photochem Photobiol B; 2006 Oct; 85(1):65-71. PubMed ID: 16798007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tooth caries detection by curve fitting of laser-induced fluorescence emission: a comparative evaluation with reflectance spectroscopy.
    Subhash N; Thomas SS; Mallia RJ; Jose M
    Lasers Surg Med; 2005 Oct; 37(4):320-8. PubMed ID: 16180220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fluorescence, excited by light in the 380-540 nm wavelength range, in in cucumber leaves depends on the time of vegetation and light regime].
    Zavoruev VV; Zavorueva EN; Shelegov AV
    Biofizika; 2000; 45(4):704-11. PubMed ID: 11040981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaves of Citrus aurantifolia exhibit a different sensibility to solar UV-B radiation according to development stage in relation to photosynthetic pigments and UV-B absorbing compounds production.
    Ibañez S; Rosa M; Hilal M; González JA; Prado FE
    J Photochem Photobiol B; 2008 Mar; 90(3):163-9. PubMed ID: 18272387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Chlorophyll phosphorescence in chloroplasts and their fragments].
    Krasnovskiĭ AA; Kovalev IuV; Kukarskikh GP; Guliaev BA
    Biofizika; 1980; 25(5):821-6. PubMed ID: 7417568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of cadmium by Myriophyllum heterophyllum Michx. and Potamogeton crispus L. and its effect on pigments and total phenolic compounds.
    Sivaci A; Elmas E; Gümüş F; Sivaci ER
    Arch Environ Contam Toxicol; 2008 May; 54(4):612-8. PubMed ID: 17973070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo monitoring of chlorophyll fluorescence response to low-dose gamma-irradiation in pumpkin (cucurbita pepo) leaves.
    Jovanić BR; Dramićanin MD
    Luminescence; 2003; 18(5):274-7. PubMed ID: 14587079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral and kinetic parameters of phosphorescence of triplet chlorophyll a in the photosynthetic apparatus of plants.
    Krasnovsky AA; Kovalev YV
    Biochemistry (Mosc); 2014 Apr; 79(4):349-61. PubMed ID: 24910208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote Raman and fluorescence studies of mineral samples.
    Bozlee BJ; Misra AK; Sharma SK; Ingram M
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2342-8. PubMed ID: 16029855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of organic solvent vapors on the protochlorophyllic complex from etiolated leaves. Conditions for reversible and irreversible destruction].
    Vorob'eva LM; Shcherbakova IIu; Krasnovskiĭ AA
    Biokhimiia; 1979 May; 44(5):880-5. PubMed ID: 454717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.