These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1841691)

  • 1. The structure of ColE1 rop in solution.
    Eberle W; Pastore A; Sander C; Rösch P
    J Biomol NMR; 1991 May; 1(1):71-82. PubMed ID: 1841691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the ColE1 rop protein at 1.7 A resolution.
    Banner DW; Kokkinidis M; Tsernoglou D
    J Mol Biol; 1987 Aug; 196(3):657-75. PubMed ID: 3681971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New crystal structures of ColE1 Rom and variants resulting from mutation of a surface exposed residue: Implications for RNA-recognition.
    Struble EB; Ladner JE; Brabazon DM; Marino JP
    Proteins; 2008 Aug; 72(2):761-8. PubMed ID: 18260113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton nuclear magnetic resonance assignments and secondary structure determination of the ColE1 rop (rom) protein.
    Eberle W; Klaus W; Cesareni G; Sander C; Rösch P
    Biochemistry; 1990 Aug; 29(32):7402-7. PubMed ID: 2223771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural parameters for proteins derived from the atomic resolution (1.09 A) structure of a designed variant of the ColE1 ROP protein.
    Vlassi M; Dauter Z; Wilson KS; Kokkinidis M
    Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 2):1245-60. PubMed ID: 10089502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human interleukin 4. The solution structure of a four-helix bundle protein.
    Smith LJ; Redfield C; Boyd J; Lawrence GM; Edwards RG; Smith RA; Dobson CM
    J Mol Biol; 1992 Apr; 224(4):899-904. PubMed ID: 1569578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional solution structure of Ca(2+)-loaded porcine calbindin D9k determined by nuclear magnetic resonance spectroscopy.
    Akke M; Drakenberg T; Chazin WJ
    Biochemistry; 1992 Feb; 31(4):1011-20. PubMed ID: 1734952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-helix bundle topology re-engineered: monomeric Rop protein variants with different loop arrangements.
    Kresse HP; Czubayko M; Nyakatura G; Vriend G; Sander C; Bloecker H
    Protein Eng; 2001 Nov; 14(11):897-901. PubMed ID: 11742109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo design of native proteins: characterization of proteins intended to fold into antiparallel, rop-like, four-helix bundles.
    Betz SF; Liebman PA; DeGrado WF
    Biochemistry; 1997 Mar; 36(9):2450-8. PubMed ID: 9054549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting RNA-protein interactions: RNA-RNA recognition by Rop.
    Predki PF; Nayak LM; Gottlieb MB; Regan L
    Cell; 1995 Jan; 80(1):41-50. PubMed ID: 7529141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The high-resolution, three-dimensional solution structure of human interleukin-4 determined by multidimensional heteronuclear magnetic resonance spectroscopy.
    Powers R; Garrett DS; March CJ; Frieden EA; Gronenborn AM; Clore GM
    Biochemistry; 1993 Jul; 32(26):6744-62. PubMed ID: 8329398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of core-packing on the structure, function, and mechanics of a four-helix-bundle protein ROP.
    Ceruso MA; Grottesi A; Di Nola A
    Proteins; 1999 Sep; 36(4):436-46. PubMed ID: 10450085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dramatic structural and thermodynamic consequences of repacking a protein's hydrophobic core.
    Willis MA; Bishop B; Regan L; Brunger AT
    Structure; 2000 Dec; 8(12):1319-28. PubMed ID: 11188696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional solution structure of an insulin dimer. A study of the B9(Asp) mutant of human insulin using nuclear magnetic resonance, distance geometry and restrained molecular dynamics.
    Jørgensen AM; Kristensen SM; Led JJ; Balschmidt P
    J Mol Biol; 1992 Oct; 227(4):1146-63. PubMed ID: 1433291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tetramerization domain of the Mnt repressor consists of two right-handed coiled coils.
    Nooren IM; Kaptein R; Sauer RT; Boelens R
    Nat Struct Biol; 1999 Aug; 6(8):755-9. PubMed ID: 10426954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional solution structure and backbone dynamics of a variant of human interleukin-3.
    Feng Y; Klein BK; McWherter CA
    J Mol Biol; 1996 Jun; 259(3):524-41. PubMed ID: 8676386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bent helix formation between RNA hairpins with complementary loops.
    Marino JP; Gregorian RS; Csankovszki G; Crothers DM
    Science; 1995 Jun; 268(5216):1448-54. PubMed ID: 7539549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refinement of the solution structure of the ribonucleotide 5'r(GCAUGC)2: combined use of nuclear magnetic resonance and restrained molecular dynamics.
    Happ CS; Happ E; Nilges M; Gronenborn AM; Clore GM
    Biochemistry; 1988 Mar; 27(5):1735-43. PubMed ID: 2452655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loopless Rop: structure and dynamics of an engineered homotetrameric variant of the repressor of primer protein.
    Glykos NM; Papanikolau Y; Vlassi M; Kotsifaki D; Cesareni G; Kokkinidis M
    Biochemistry; 2006 Sep; 45(36):10905-19. PubMed ID: 16953576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone.
    Pellecchia M; Szyperski T; Wall D; Georgopoulos C; Wüthrich K
    J Mol Biol; 1996 Jul; 260(2):236-50. PubMed ID: 8764403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.