These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 18417180)

  • 21. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1.
    Lo SC; Hannink M
    Mol Cell Biol; 2006 Feb; 26(4):1235-44. PubMed ID: 16449638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy.
    Shibata T; Ohta T; Tong KI; Kokubu A; Odogawa R; Tsuta K; Asamura H; Yamamoto M; Hirohashi S
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13568-73. PubMed ID: 18757741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway.
    Zhang DD; Lo SC; Sun Z; Habib GM; Lieberman MW; Hannink M
    J Biol Chem; 2005 Aug; 280(34):30091-9. PubMed ID: 15983046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antioxidant-induced INrf2 (Keap1) tyrosine 85 phosphorylation controls the nuclear export and degradation of the INrf2-Cul3-Rbx1 complex to allow normal Nrf2 activation and repression.
    Kaspar JW; Niture SK; Jaiswal AK
    J Cell Sci; 2012 Feb; 125(Pt 4):1027-38. PubMed ID: 22448038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unique pattern of component gene disruption in the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in serous ovarian cancer.
    Martinez VD; Vucic EA; Thu KL; Pikor LA; Hubaux R; Lam WL
    Biomed Res Int; 2014; 2014():159459. PubMed ID: 25114896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. USP15 negatively regulates Nrf2 through deubiquitination of Keap1.
    Villeneuve NF; Tian W; Wu T; Sun Z; Lau A; Chapman E; Fang D; Zhang DD
    Mol Cell; 2013 Jul; 51(1):68-79. PubMed ID: 23727018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cysteine-based regulation of the CUL3 adaptor protein Keap1.
    Sekhar KR; Rachakonda G; Freeman ML
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):21-6. PubMed ID: 19560482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism.
    Kansanen E; Bonacci G; Schopfer FJ; Kuosmanen SM; Tong KI; Leinonen H; Woodcock SR; Yamamoto M; Carlberg C; Ylä-Herttuala S; Freeman BA; Levonen AL
    J Biol Chem; 2011 Apr; 286(16):14019-27. PubMed ID: 21357422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypermethylation of the Keap1 gene inactivates its function, promotes Nrf2 nuclear accumulation, and is involved in arsenite-induced human keratinocyte transformation.
    Wang D; Ma Y; Yang X; Xu X; Zhao Y; Zhu Z; Wang X; Deng H; Li C; Gao F; Tong J; Yamanaka K; An Y
    Free Radic Biol Med; 2015 Dec; 89():209-19. PubMed ID: 26409248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells.
    Iso T; Suzuki T; Baird L; Yamamoto M
    Mol Cell Biol; 2016 Dec; 36(24):3100-3112. PubMed ID: 27697860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex.
    Tao S; Liu P; Luo G; Rojo de la Vega M; Chen H; Wu T; Tillotson J; Chapman E; Zhang DD
    Mol Cell Biol; 2017 Apr; 37(8):. PubMed ID: 28115426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.
    Zhang DD; Hannink M
    Mol Cell Biol; 2003 Nov; 23(22):8137-51. PubMed ID: 14585973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis of Keap1 interactions with Nrf2.
    Canning P; Sorrell FJ; Bullock AN
    Free Radic Biol Med; 2015 Nov; 88(Pt B):101-107. PubMed ID: 26057936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles.
    Turpaev KT
    Biochemistry (Mosc); 2013 Feb; 78(2):111-26. PubMed ID: 23581983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly.
    Adamson RJ; Payne NC; Bartual SG; Mazitschek R; Bullock AN
    Free Radic Biol Med; 2023 Aug; 204():215-225. PubMed ID: 37156295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and mechanistic insights into the Keap1-Nrf2 system as a route to drug discovery.
    Madden SK; Itzhaki LS
    Biochim Biophys Acta Proteins Proteom; 2020 Jul; 1868(7):140405. PubMed ID: 32120017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.