BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1461 related articles for article (PubMed ID: 18417203)

  • 1. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of silicon content on the sintering and biological behaviour of Ca10(PO4)(6-x)(SiO4)x(OH)(2-x) ceramics.
    Palard M; Combes J; Champion E; Foucaud S; Rattner A; Bernache-Assollant D
    Acta Biomater; 2009 May; 5(4):1223-32. PubMed ID: 19036652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical characterization of silicon-substituted hydroxyapatite.
    Gibson IR; Best SM; Bonfield W
    J Biomed Mater Res; 1999 Mar; 44(4):422-8. PubMed ID: 10397946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of elemental microanalysis for estimation of osteoinduction and osteoconduction of hydroxyapatite bone implants].
    Dawidowicz A; Pielka S; Paluch D; Kuryszko J; Staniszewska-Kuś J; Solski L
    Polim Med; 2005; 35(1):3-14. PubMed ID: 16050072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method.
    Xu JL; Khor KA
    J Inorg Biochem; 2007 Feb; 101(2):187-95. PubMed ID: 17095092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of osteoblast responses to hydroxyapatite and hydroxyapatite/soluble calcium phosphate composites.
    Ogata K; Imazato S; Ehara A; Ebisu S; Kinomoto Y; Nakano T; Umakoshi Y
    J Biomed Mater Res A; 2005 Feb; 72(2):127-35. PubMed ID: 15625683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon-substituted hydroxyapatite thin films: effect of annealing temperature on coating stability and bioactivity.
    Thian ES; Huang J; Best SM; Barber ZH; Bonfield W
    J Biomed Mater Res A; 2006 Jul; 78(1):121-8. PubMed ID: 16604532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon effect on the composition and structure of nanocalcium phosphates: In vitro biocompatibility to human osteoblasts.
    Tomoaia G; Mocanu A; Vida-Simiti I; Jumate N; Bobos LD; Soritau O; Tomoaia-Cotisel M
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():37-47. PubMed ID: 24582220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films.
    Thian ES; Huang J; Best SM; Barber ZH; Brooks RA; Rushton N; Bonfield W
    Biomaterials; 2006 May; 27(13):2692-8. PubMed ID: 16423389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetron co-sputtered silicon-containing hydroxyapatite thin films--an in vitro study.
    Thian ES; Huang J; Best SM; Barber ZH; Bonfield W
    Biomaterials; 2005 Jun; 26(16):2947-56. PubMed ID: 15603789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of single-phase silicon-substituted alpha-tricalcium phosphate.
    Reid JW; Tuck L; Sayer M; Fargo K; Hendry JA
    Biomaterials; 2006 May; 27(15):2916-25. PubMed ID: 16448694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications.
    Porter AE; Best SM; Bonfield W
    J Biomed Mater Res A; 2004 Jan; 68(1):133-41. PubMed ID: 14661258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of biocompatibility of beta-tricalcium phosphate-reinforced high-density polyethylene; an orthopedic composite.
    Homaeigohar SSh; Shokrgozar MA; Sadi AY; Khavandi A; Javadpour J; Hosseinalipour M
    J Biomed Mater Res A; 2005 Oct; 75(1):14-22. PubMed ID: 16092112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: characterization and cell response.
    Mestres G; Le Van C; Ginebra MP
    Acta Biomater; 2012 Mar; 8(3):1169-79. PubMed ID: 22154863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Sr-hydroxyapatite microcrystal on cultured cell.
    Sun J; Xue M; Kikuchi M; Akao M; Aoki H
    Biomed Mater Eng; 1994; 4(7):503-12. PubMed ID: 7881334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells.
    Aina V; Bergandi L; Lusvardi G; Malavasi G; Imrie FE; Gibson IR; Cerrato G; Ghigo D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1132-42. PubMed ID: 23827552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubility of hydroxyapatite by solid titration at pH 3-4.
    Pan HB; Darvell BW
    Arch Oral Biol; 2007 Jul; 52(7):618-24. PubMed ID: 17240349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method.
    Suchanek WL; Byrappa K; Shuk P; Riman RE; Janas VF; TenHuisen KS
    Biomaterials; 2004 Aug; 25(19):4647-57. PubMed ID: 15120511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human osteoblast response to silicon-substituted hydroxyapatite.
    Botelho CM; Brooks RA; Best SM; Lopes MA; Santos JD; Rushton N; Bonfield W
    J Biomed Mater Res A; 2006 Dec; 79(3):723-30. PubMed ID: 16871624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells.
    Shi Z; Huang X; Cai Y; Tang R; Yang D
    Acta Biomater; 2009 Jan; 5(1):338-45. PubMed ID: 18753024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 74.