BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18417251)

  • 1. Identification of the insulin-responsive tyrosine phosphorylation sites on IRSp53.
    Heung MY; Visegrady B; Fütterer K; Machesky LM
    Eur J Cell Biol; 2008 Sep; 87(8-9):699-708. PubMed ID: 18417251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein.
    Yamagishi A; Masuda M; Ohki T; Onishi H; Mochizuki N
    J Biol Chem; 2004 Apr; 279(15):14929-36. PubMed ID: 14752106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of IRSp53-dependent filopodial dynamics by antagonism between 14-3-3 binding and SH3-mediated localization.
    Robens JM; Yeow-Fong L; Ng E; Hall C; Manser E
    Mol Cell Biol; 2010 Feb; 30(3):829-44. PubMed ID: 19933840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of IRTKS, a novel IRSp53/MIM family actin regulator with distinct filament bundling properties.
    Millard TH; Dawson J; Machesky LM
    J Cell Sci; 2007 May; 120(Pt 9):1663-72. PubMed ID: 17430976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53.
    Millard TH; Bompard G; Heung MY; Dafforn TR; Scott DJ; Machesky LM; Fütterer K
    EMBO J; 2005 Jan; 24(2):240-50. PubMed ID: 15635447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. I-BAR domains, IRSp53 and filopodium formation.
    Ahmed S; Goh WI; Bu W
    Semin Cell Dev Biol; 2010 Jun; 21(4):350-6. PubMed ID: 19913105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex.
    Disanza A; Mantoani S; Hertzog M; Gerboth S; Frittoli E; Steffen A; Berhoerster K; Kreienkamp HJ; Milanesi F; Di Fiore PP; Ciliberto A; Stradal TE; Scita G
    Nat Cell Biol; 2006 Dec; 8(12):1337-47. PubMed ID: 17115031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IRSp53 coordinates AMPK and 14-3-3 signaling to regulate filopodia dynamics and directed cell migration.
    Kast DJ; Dominguez R
    Mol Biol Cell; 2019 May; 30(11):1285-1297. PubMed ID: 30893014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex.
    Krugmann S; Jordens I; Gevaert K; Driessens M; Vandekerckhove J; Hall A
    Curr Biol; 2001 Oct; 11(21):1645-55. PubMed ID: 11696321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2.
    Abou-Kheir W; Isaac B; Yamaguchi H; Cox D
    J Cell Sci; 2008 Feb; 121(Pt 3):379-90. PubMed ID: 18198193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics.
    Lim KB; Bu W; Goh WI; Koh E; Ong SH; Pawson T; Sudhaharan T; Ahmed S
    J Biol Chem; 2008 Jul; 283(29):20454-72. PubMed ID: 18448434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dentatorubral-pallidoluysian atrophy protein interacts through a proline-rich region near polyglutamine with the SH3 domain of an insulin receptor tyrosine kinase substrate.
    Okamura-Oho Y; Miyashita T; Ohmi K; Yamada M
    Hum Mol Genet; 1999 Jun; 8(6):947-57. PubMed ID: 10332026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IRSp53 mediates podosome formation via VASP in NIH-Src cells.
    Oikawa T; Okamura H; Dietrich F; Senju Y; Takenawa T; Suetsugu S
    PLoS One; 2013; 8(3):e60528. PubMed ID: 23555988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane binding properties of IRSp53-missing in metastasis domain (IMD) protein.
    Futó K; Bódis E; Machesky LM; Nyitrai M; Visegrády B
    Biochim Biophys Acta; 2013 Nov; 1831(11):1651-5. PubMed ID: 23872532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B.
    Bompard G; Sharp SJ; Freiss G; Machesky LM
    J Cell Sci; 2005 Nov; 118(Pt 22):5393-403. PubMed ID: 16280553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LIN7 regulates the filopodium- and neurite-promoting activity of IRSp53.
    Crespi A; Ferrari I; Lonati P; Disanza A; Fornasari D; Scita G; Padovano V; Pietrini G
    J Cell Sci; 2012 Oct; 125(Pt 19):4543-54. PubMed ID: 22767515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of IRSp53 inhibition by 14-3-3.
    Kast DJ; Dominguez R
    Nat Commun; 2019 Jan; 10(1):483. PubMed ID: 30696821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ProSAP/Shank postsynaptic density proteins interact with insulin receptor tyrosine kinase substrate IRSp53.
    Bockmann J; Kreutz MR; Gundelfinger ED; Böckers TM
    J Neurochem; 2002 Nov; 83(4):1013-7. PubMed ID: 12421375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional importance of amino-terminal domain of Shc for interaction with insulin and epidermal growth factor receptors in phosphorylation-independent manner.
    Sasaoka T; Ishihara H; Sawa T; Ishiki M; Morioka H; Imamura T; Usui I; Takata Y; Kobayashi M
    J Biol Chem; 1996 Aug; 271(33):20082-7. PubMed ID: 8702728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors.
    Kast DJ; Yang C; Disanza A; Boczkowska M; Madasu Y; Scita G; Svitkina T; Dominguez R
    Nat Struct Mol Biol; 2014 Apr; 21(4):413-22. PubMed ID: 24584464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.