BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 18417287)

  • 1. Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace.
    Stasinakis AS; Elia I; Petalas AV; Halvadakis CP
    J Hazard Mater; 2008 Dec; 160(2-3):408-13. PubMed ID: 18417287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal.
    Banat F; Al-Asheh S; Al-Ahmad R; Bni-Khalid F
    Bioresour Technol; 2007 Nov; 98(16):3017-25. PubMed ID: 17158045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An attractive agro-industrial by-product in environmental cleanup: dye biosorption potential of untreated olive pomace.
    Akar T; Tosun I; Kaynak Z; Ozkara E; Yeni O; Sahin EN; Akar ST
    J Hazard Mater; 2009 Jul; 166(2-3):1217-25. PubMed ID: 19153007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents.
    Mohamed Abdoul-Latif F; Ainane A; Hachi T; Abbi R; Achira M; Abourriche A; Brulé M; Ainane T
    Molecules; 2023 May; 28(11):. PubMed ID: 37298784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-sorption of Tl-201 radionuclide on olive pomace.
    Yapici S; Eroglu H; Varoglu E
    Appl Radiat Isot; 2011 Mar; 69(3):614-22. PubMed ID: 21167723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of preparation conditions of a novel low-cost natural bio-sorbent from olive pomace and column adsorption processes on the removal of phenolic compounds from olive oil mill wastewater.
    Haydari I; Lissaneddine A; Aziz K; Ouazzani N; Mandi L; El Ghadraoui A; Aziz F
    Environ Sci Pollut Res Int; 2022 Nov; 29(53):80044-80061. PubMed ID: 35508849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low cost biosorbent "banana peel" for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies.
    Achak M; Hafidi A; Ouazzani N; Sayadi S; Mandi L
    J Hazard Mater; 2009 Jul; 166(1):117-25. PubMed ID: 19144464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-separation, speciation and determination of chromium in water using partially pyrolyzed olive pomace sorbent.
    El-Sheikh AH; Abu Hilal MM; Sweileh JA
    Bioresour Technol; 2011 May; 102(10):5749-56. PubMed ID: 21463937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Fenton's oxidation on the particle size distribution of organic carbon in olive mill wastewater.
    Dogruel S; Olmez-Hanci T; Kartal Z; Arslan-Alaton I; Orhon D
    Water Res; 2009 Sep; 43(16):3974-83. PubMed ID: 19577271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of olive-mill pomace mixed with organic fraction of municipal solid waste.
    Ağdağ ON
    Biodegradation; 2011 Sep; 22(5):931-8. PubMed ID: 21221721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption-desorption of phenolic compounds from olive mill wastewater using a novel low-cost biosorbent.
    Papaoikonomou L; Labanaris K; Kaderides K; Goula AM
    Environ Sci Pollut Res Int; 2021 May; 28(19):24230-24244. PubMed ID: 31865583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically modified olive stone: a low-cost sorbent for heavy metals and basic dyes removal from aqueous solutions.
    Aziz A; Ouali MS; Elandaloussi el H; De Menorval LC; Lindheimer M
    J Hazard Mater; 2009 Apr; 163(1):441-7. PubMed ID: 18687522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of waters contaminated with ionic herbicides by sorption on polymerin.
    Sannino F; Iorio M; De Martino A; Pucci M; Brown CD; Capasso R
    Water Res; 2008 Feb; 42(3):643-52. PubMed ID: 17904611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity.
    Martín-Lara MA; Pagnanelli F; Mainelli S; Calero M; Toro L
    J Hazard Mater; 2008 Aug; 156(1-3):448-57. PubMed ID: 18242836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of polyphenol extractions from olive pomace and solid fraction of olive mill waste water.
    Tercan S; Seker M
    Nat Prod Res; 2012; 26(19):1837-41. PubMed ID: 22085324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature and aeration rate on co-composting of olive mill wastewater with olive stone wooden residues.
    Vlyssides A; Barampouti EM; Mai S; Loizides M
    Biodegradation; 2010 Nov; 21(6):957-65. PubMed ID: 20401685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium and thermodynamic analysis of zinc ions adsorption by olive oil mill solid residues.
    Hawari A; Rawajfih Z; Nsour N
    J Hazard Mater; 2009 Sep; 168(2-3):1284-9. PubMed ID: 19346073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detrimental effects of olive mill wastewater on the composting process of agricultural wastes.
    Abid N; Sayadi S
    Waste Manag; 2006; 26(10):1099-107. PubMed ID: 16181778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and equilibrium studies of adsorption of chromium(VI) ion from industrial wastewater using Chrysophyllum albidum (Sapotaceae) seed shells.
    Amuda OS; Adelowo FE; Ologunde MO
    Colloids Surf B Biointerfaces; 2009 Feb; 68(2):184-92. PubMed ID: 19022632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New biosorbent materials for heavy metal removal: product development guided by active site characterization.
    Francesca P; Sara M; Luigi T
    Water Res; 2008 Jun; 42(12):2953-62. PubMed ID: 18423513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.